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R. Miller, Advisor

The goal of this effort is to develop shear-deformable finite elements which can be used to

find the natural frequencies of composite beams. The first objective of the study is to derive the

mass and stiffness matrices for the elements of interest and incorporate them into computer programs

which can be used to estimate the natural frequencies of composite beams. Composite beams of

interest include sandwich beams and those of fiber-reinforced laminated construction. Elements

based on the beam theories of Bernoulli-Euler, Timoshenko, Levinson-Bickford, as well as a general

third-order beam theory are considered. The elements ignore transverse normal strain, coupling

between longitudinal and lateral motion caused by Poisson effects, and damping, and are limited

to linear, elastic materials. However, both isotropic and orthotropic layers in symmetric and

nonsymmetric configurations can be accommodated. In addition, the elements can impose a

kinematic constraint on the entire beam or on individual layers within the beam. This study refers

to elements which employ the latter approach as "stacked elements". K

The second objective is to evaluate the performance of the elements to determine when

higher-order elements, including stacked elements, are needed to account for the effect of shear

deformation on the natural frequencies of composite beams. Efforts associated with this objective

indicate all elements developed are accurate within the limits of their respective theories. All

elements possess good monotonic convergence properties and do not lock in the thin-beam limit.

In addition, the evaluation reveals that the Bernoulli-Euler beam element is generally limited

to cases involving the lower natural frequencies of long, slender beams made out of homogeneous

materials having a low degree of orthotropy. (The degree of orthotropy is given by the ratio of
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Young's modulus in the longitudinal direction to the transverse shear modulus in the plane of the

beam.) The Timoshenko beam element can be used effectively for homogeneous and composite

beams possessing fairly high degrees of orthotropy if the analyst is able to choose an appropriate

value for the shear correction factor associated with Timoshenko's theory. The Levinson-Bickford

theory does not require a correction factor, and the element based on this theory can be used with

confidence as long as the degree of orthotropy is not too high. As the degree of orthotropy increases,

the analyst must rely on the third-order element to attain an adequate level of accuracy.

Finally, it is found that stacked elements must be used in the analysis of sandwich beams

when the shear modulus of the facings is much larger than the shear modulus of the core. In addition

to this condition, the facings must be thick enough to prevent the deformation of the core from

dominating the strain energy of the beam.
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1. INTRODUCTION

1.1. Background

Modem composites, which combine high strength and stiffness with light weight, have

become very important structural materials. The added flexibility of designing the construction

material as well as the structure itself leads to significant reductions in weight, since material is not

used in directions or locations where it is not required. Such composite materials have obvious

applications in aerospace structures, but are also being used in sports equipment, automobiles, and

ships as well.

However, the behavior of composites is much harder to analyze than that of more

homogeneous, isotropic materials. The inherent non-homogeneity of composites may lead to

coupling between various response modes, such as stretching and bending. The anisotropy designed

into composites also increases the complexity of analytical efforts. In addition, both the

non-homogeneity and anisotropy of composites increase the number of failure modes which must

be considered in composite design.

At the same time, analysis plays a more critical role in the design of composites. The number

of combinations of design variables of interest is often too numerous to test. In addition, the

complexity of composite behavior increases the cost of testing these materials. Therefore, analysis

is often used to supplement test data since it may not be possible to generate experimentally all the

data needed to design a composite mstciial.

One phenomenon which can complicate the bending response of materials, particularly

composite materials, is shear deformation. In pure bending, the lateral deflection of the material

is caused primarily by the curvature developed by the material to generate the internal moments

necessary to maintain rotational equilibrium. However, if the bending is caused by laterally applied
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loads, then internal shear forces are also required to maintain translational equilibrium. The

deformation associated with these shear forces, called shear deformation, produces a lateral

deflection in addition to the bending deflection associated with the curvature.

In general, shear deformation increases the deflection and decreases the buckling loads and

natural frequencies of beams, plates, and shells. The effects of this deformation increase as the

span-to-thickness ratio of the bending element decreases, as the ratio between Young's modulus

and the shear modulus increases, or as the mismatch of material properties in adjacent layers of

layered materials increases.

Since classical theories for beams, plates, and shells cannot account directly for shear

deformation, higher-order theories are required when the effects of shear deformation must be

consi dred. These higher-order theories generally lead to a more complicated set of governing

equations. Numerical methods, such as finite difference or finite element approaches, are often

used to solve problems of practical interest, since exact analytical solutions are usually restricted

to highly idealized cases. Therefore, much activity has been devoted to developing numerical

techniques which can account for the effects of shear deformation in the bending response of beams,

plates, and shells.

The goal of this present effort is to develop shear-deformable finite elements which can be

used to find the natural frequencies of composite beams. A beam is usually defined as a structural

member whose dimension in one direction (i.e., its length) is significantly greater than its dimensions

in the other two orthogonal directions. The study of beams is motivated by their importance as

structural elements and by the insight they give into the bending behavior of more complicated

components, such as plates and shells.

Finite elements capable of analyzing natural frequencies are of interest for several reasons.

The desire to avoid resonance provides perhaps the strongest motivation for developing such
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elements. Driving a component at one of its natural frequencies produces the condition of resonance,

in which the response of the component ma , become unbourded. Such a condition can be caused

by machinery operating near the component of interest or possibly by aeroelastic effects. Even if

resonance does not cause failure immediately, it can reduce the fatigue life of a member significantly.

Therefore, a knowledge of natural frequencies is essential to avoid the problems associated with

this phenomenon.

In addition, once it has been established that a finite element is capable of finding natural

frequencies, the element itself can be used to solve forced-vibration problems with confidence since

the validity of the element's mass and stiffness matrices should not be in question.

The elements discussed in this study can be used to estimate the natural frequencies of straight,

prismatic bcams of sandwich or fiber-reinforced laminate construction under a variety of end

conditions.

1.2. Literature Survey

The formulation of the classical beam theory used today started with Galileo in the early 17th

century and ended with the work of Daniel Bernoulli and Leonard Euler in the 18th century [1].'

Developments in the theory of elasticity, also traced in [11, have provided a more thorough

understanding of beam behavior.

In elasticity, solutions must s tisfy equilibrium of stresses and compatibility of displacements,

as well as the stress and displacement conditions on the boundary of the beam [2]. Solutions can

be obtained by choosing an assumed displacement field, stress field, or potential function (from

which stresses or displacements can be derived) which satisfies the governing equations and

boundary conditions just mentioned.

' Numbers in brackets denote references in the List of References at the end of the thesis.
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The static response of a three-dimensional beam in pure bending using an assumed stress

field has been treated by Timoshenko and Goodier ([2], pp. 284-288) and Love [3] for isotropic

beams and by Lekhnitskii [4] for anisotropic beams. More complicated problems in three dimensions

require the use of an unknown stress function in the assumed stress field (see [2], pp. 354-379).

Potential functions are often used to analyze the static behavior of beams in plane stress or

plane strain. As discussed in [2] (pp. 35-53), potential functions can be expressed as polynomials

of various de-grees and used to solve many bending problems of interest. Expressing potential

functions as Fourier-series expansions is also possible ([5] and [2], pp. 53-63). A systematic

approach for picking polynomial functions was given by Neou [6] for isotropic beams and by Hashin

[71 for anisotropic beams. A potential function approach was also used by Schile [8] to treat

non-homogeneous beams.

Although elasticity solutions for the static response of layered beams do not seem to be in

the literature, solutions for layered plates, including plates in plane strain, have been published.

Pagano [9] examined the response of simply supported orthotropic composite plates in cylindrical

bending caused by static sinusoidal loading by assuming an independent stress field in each layer.

A method based on assuming independent di-nlacements in each layer was also developed by

Pagano [10] for simply supported rectangular plates under sinusoidal loading. This

displacement-based method was used by Pagano and Hatfield [11] to examine the influence of

multiple layers (i.e., more than three layers) in the response of laminated plates.

Several authors have published elasticity solutions for vibration of homogeneous, isotropic

beams. Timoshenko [ 12] solved the governing equations taken from Articles 14(d) and 204 of [3]

by assuming fields for the rotation and cubical dilatation which are sinusoidal over the length of

the beam, hyperbolic through its thickness, and harmonic in time. Forcing the assumcd field to

satisfy the traction-free boundary conditions on the lateral surfaces of the beam provides a
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transcendental equation from which natural frequencies can be extracted. Cowper [13] employerd

a similar approach using assumed fields for the lateral and longitudinal displacements of the beam.

Both solutions were developed to check the accuracy of approximate bear-deformation theories.

Elasticity solutions for the dynamic response of composite or sandwich beams are hard to

find. However, several authors have extended the work of Pagano [9,10] to the free vibrations of

composite plates, including plates in cylindrical bending. In 1970, Srinivas, Joga Rao, and Rao

[14] presented an elasticity solution for laminated simply supported rectangular plates having

isotropic layers. That same year, the method was extended by Srinivas and Rao [151 to similar

plates made of orthotropic materials. Also in le- ' Jones [161 published a paper which discusses

the elasticity solution for cross-ply laminates in cylindrical bending. Two years later, Kulkarni and

Pagano [ 17] examined cross-ply and angle-ply laminates in cylindrical bending. In an effort similar

to that of [11], Noor [18] examined the natural frequencies of multilayered plates using a finite

difference formulation of the elasticity solution.

Siiice exact elasticity solutions are limited to highly idealized loading conditions and boundary

conditions, and involve fairly difficult calculations, approximate theories are often used to examine

cases involving other conditions of interest or to reduce the intensity of the calculational effort

required to obtain reasonable results. Most approximate techniques assume a stress or displacement

field which is simpler than the fields associated with elasticity solutions and may actually involve

a truncation of a series expansion of the elasticity solution. In general, the governing equations are

obtained using a strength-of-materials approach or an energy method.

In the strength-of-materials approach, the constitutive relations are expressed in terms of

stress resultants, such as the internal shear and moment, and the equilibrium equations are derived

in terms of these stress resultants. Natural boundary conditions are usually given in terms of these
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resultants as well. In an energy formulation, unknown functions in the assumed fields are chosen

to satisfy some variational principle, such as the principle of minimum potential energy for statics

or Hamilton's principle for dynamics (see [ 19]).

An approximate technique based on an assumed stress field was developed for orthotropic

beams under static loading by Rehfield and Murthy [20] in 1982. The assumed field is taken from

the elasticity solution for a simply supported isotropic beam under a uniform static load (see [2],

pp. 46-50), and is extended to orthotropic beams under a variety of end conditions.

In 1986, Suzuki [21] presented an approximate static theory whicb is based on an assumed

stress field which satisfies equilibrium and natural boundary conditions. Governing equations for

the unknown functions in the field are obtained by forcing the internal strain energy to be a minimum.

Although assumed distributions of stress can be used to solve problems involving beams

under static loading, dynamic response is usually obtained from displacement-based theories. The

most elementary approximate beam theory is Bernoulli-Euler beam theory alluded to at the start of

this survey. Although not necessarily formulated originally in terms of an assumed displacement

field, or kinematic constraint, the development of this theory required an understanding of how a

beam deforms longitudinally in bending (see [1]). Today, the kinematic constraint can be derived

from the assumptions that sections which are originally plane and perpendicular to the neutral

surface of the beam before bending remain plane and perpendicular to the neutral surface after

bending. These assumptions allow bending deformation to occur, but ignore shear deformation.

The static response of Bemoulli-Euler beams is covered in just about any text on strength of

materials (e.g., see [22]). As early as 1925, Timoshenko [23] used the theory to investigate the

response of bimetallic strips used as thermostats. A more systematic treatment of Bernoulli-Euler

sandwich beams is given by Allen [24], but even in this reference some estimate of the effect of

shear deformation on lateral deflection is made using the shear stress obtained from equilibrium
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considerations. Laminated beams have not received much attention in the literature, but many

investigators have applied the analogous plate theory (Kirchoff plate theory) to problems involving

laminated plates (see [25]).

Regarding the dynamic response of Bernoulli-Euler beams, Timoshenko, Young, and Weaver

[26] provide a thorough review of the vibration of these beams. The effects of rotary inertia on

beam vibration can be incorporated into the theory easily, which was done by Rayleigh in his classic

Theory of Sound [27]. Although Bernoulli-Euler beam theory can be extended to treat the dynamic

response of sandwich or laminated beams, its use in this area does not appear to be widespread in

the literature, However, references which use Kirchoff theory to analyze the dynamic response of

laminated plates are easy to find (e.g., [25] and [28]).

Bemoulli-Euler beam theory has proven to be extremely useful over the years. It is very easy

to use and provides answers which are accurate enough for many engineering applications.

However, when the effects of shear deformation become important, higher-order theories must be

used.

The simplest improvement to Bernoulli-Euler beam theory which incorporates shear

deformation, and rotary inertia as well, was presented in a paper by Timoshenko [29] in 1921. In

this theory, sections which are plane and perpendicular to the neutral surface before bending remain

plane but are not constrained to remain perpendicular to the neutral surface after bending occurs.

Therefore, some approximate form of shear deformation is allowed explicitly by the theory.

Although this theory has come to be known as Timoshenko beam theory, it should be pointed

out that the main features of the theory were outlined by others prior to the appearance of

Timoshenko's paper in 1921. As stated above, the effects of rotary inertia were discussed by

Rayleigh [27] in 1877. In addition, Rankine [30] addressed the influence of shear deformation on
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static deflection in a work first published in 1858. Both rotary inertia and shear deformation were

treated by Bresse [31] as early as 1859. The theory of Bresse, developed for curved beams, is

summarized nicely in English in a history of elasticity written by Todhunter and Pearson [32].

Much of the literature on Timoshenko beams is devoted to vibrations, as was Timoshenko's

paper. Both Anderson [331 and Dolph [34] investigated the free vibration of Timoshenko beams

more thoroughly and identified a second mode of vibration associated with the shear deformation

of the beam. A more complete examination was conducted by Huang [351 in 1961. This work

provides the mode shapes and transcendental frequency equations for a variety of end conditions.

Brunelle 136] extended Timoshenko beam theory to transversely isotropic beams under initial axial

stress. His paper examines buckling of clamped and simply supported beams, free vibration of

simply supported beams, and wave propagation in a beam of infinite length.

In 1976, Downs [37] re-examined the free vibration of isotropic Timoshenko beams and

identified a third possible mode of response discarded as physically impossible by Dolph [34]. This

mode involves transverse shear vibration with no transverse deflection, a mode which has been

seen in finite element calculations. This mode was also discussed earlier by Mindlin and Deresiewicz

[38] where it is referred to as thickness-shear motion.

Although Timoshenko beam theory can be extended easily to composite beams, references

on this subject do not appear to be prevalent in the literature. However, the analogous plate theory

discussed by Mindlin [39] has been extended to the vibration of composite plates by a number of

investigators, including Yang, Norris, and Stavsky [40] and Whitney and Pagano [41].

The first-order estimate of shear deformation made possible by Timoshenko beam theory

provides a dramatic improvement over results obtained using Bemoulli-Euler beam theory when

shear deformation effects become important. This can be seen in the experimental work done by

Traill-Nash and Collar [421 and Kordes and Kruszewski [43]. However, the assumptions of the
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theory lead to shear strain which is constant over the depth of the beam. Since shear strain is actually

distributed in some other fashion (e.g., parabolically), a correction factor is often used to allow

Timoshenko beam theory to model shear deformation effects more accurately.

A number of schemes have been proposed for calculating this correction factor. Timoshenko

himself suggested a value of 2/3 in [29]. This value allows the shear stress obtained from the theory

to match the maximum stress associated with the standard parabolic distribution of shear stress for

a beam of rectangular cross section. A value of 5/6 allows the strain energy from the Timoshenko

beam theory to match the strain energy associated with the parabolic distribution of shear strain for

a rectangular cross section (see [44]).

A more sophisticated treatment of the shear correction factor was given by Cowper in [45].

His expressions for this factor were obtained by accounting for the two-dimensional distribution

of shear stress over the cross section of a beam given by three-dimensional elasticity theory. This

approach accounts for Poisson's ratio and the shape of the cross section. The expression for a

rectangular cross section with Poisson's ratio equal to zero reduces to the standard value of 5/6.

Another expression for the correction factor which is popular for dynamic calculations was

discussed by Mindlin and Deresiewicz in [38]. This reference states that since the distribution of

shear strain varies with the mode of vibration, it may be necessary to allow the factor to vary with

mode number. An expression which has proven useful at high and low frequencies for a variety of

cross-sectional shapes can be derived by forcing the natural frequency of the thickness-shear mode

for the Timoshenko beam to equal the natural frequency for this mode obtained using elasticity

theory. The expression provides a value of t2/12 for a Timoshenko beam of rectangular cross

section or for a Mindlin plate.
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In addition to depending on Poisson's ratio, the shape of the cross section, and the mode of

response, the shear correction factor is also sensitive to the non-homogeneity present in laminated

materials. Methods for estimating correction factors for laminated beams and plates are presented

in [461 and [47], respectively.

The desire to dispense with the necessity of calculating a correction factor for shear has

provided the motivation for developing higher-order displacement-based theories that allow the

shear strain to vary in some reasonable fashion over the cross section of the beam. These theories

allow warping in the longitudinal direction so that initially plane sections are no longer required to

remain plane after bending. This is achieved by expressing the longitudinal displacements as a

truncated series involving unknown functions of the longitudinal coordinate times powers of the

lateral coordinate. This concept was discussed as early as 1890 by Basset [481 in a paper on the

extension and flexure of shells.

Perhaps the most general static theory for isotropic beams was given by Wang and Dickson

[49]. In their paper, they suggested expressing both lateral and longitudinal displacements as power

series expansions. This approach accounts for strain in the lateral direction (transverse normal

strain), as well as shear deformation. The governing equations for the unknown functions in the

assumed displacement field are obtained by satisfying equilibrium and enforcing boundary

conditions.

Less ambitious higher-order kinematic constraints have been proposed by others. In addition

to the stress-based theory discussed in [21], Suzuki [50] has developed a displacement-based theory

which can be used to examine the bending and free vibration of beams. The theory, which ignores

transverse normal strain and Poisson's effects, uses an approach similar to that in [21]. Suzuki

claims that the advantage of his approach is that it satisfies equilibrium and energy considerations

simultaneously, something most approximate methods do not do.
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Another theory based on an assumed kinematic constraint has been proposed by Krishna

Murty [51-55] in a series of papers. The theory allows warping in the longitudinal direction and

divides the lateral deflection into bending and shear components. The governing equations are

derived using an energy formulation. The theory was developed originally to examine the vibration

of short beams [51 ], and was later extended to treat the bending and buckling of short beams [52],

the free vibration of isotropic laminated beams [53], and the free vibration and steady-state response

of soft-cored sandwich beams [55]. Improvements to the static theory presented in [521 are given

in [54] by accounting for the static coupling between the lateral deflection caused by bending and

the lateral deflection caused by shear. This coupling is ignored in [52].

Levinson beam theory [56,571 is similar to the approaches of Suzuki [501 and Krishna Murty

[54], but is more straightforward in many ways. Levinson ignores transverse normal strain and

Poisson's effects, but accounts for shear deformation with longitudinal displacement which varies

linearly and cubically over the depth of the beam. The cubic, or third-order, variation in longitudinal

displacement leads to a parabolic distribution of shear strain over the depth of the beam. In addition,

the kinematic constraint is chosen to enforce the boundary condition of no shear strain on the lateral

surfaces of the beam. The equations of motion are derived using a direct, or strength-of-materials

approach and are very similar to the equations for a Timoshenko beam. However, no correction

factor is required in Levinson beam theory.

In 1982, Bickford [581 used Levinson's kinematic constraint to develop a different set of

governing equations using a variational procedure. It is interesting to note that the equations of

motion for Bernoulli-Euler and Timoshenko beams are not sensitive to whether the direct method

or an energy formulation is used in their derivation. This is not true for Levinson theory. As pointed

out by Levinson in 1591, the direct approach yields a fourth-order system of partial differential

equations which can be solved fairly easily, whereas the use of energy methods yields a sixth-order

system which is harder to work with.
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As with Timoshenko beam theory, it appears that Levinson theory has not been applied directly

to problems involving laminated or sandwich beams. However, Levinson did extend his theory to

plates in [60], where the governing equations are developed using a direct strength-of-materials

approach. Later, Reddy [611 formulated a plate theory based on Levinson's kinematic constraint,

but used energy methods rather than the direct approach. The resulting theory was given a finite

element formulation by Reddy and Khdeir [62], who used the element to examine the buckling and

vibration of laminated plates. In addition to comparing the relative performance of theories of

various order, this paper provides a good set of references on the response of laminated plates.

Other higher-order theories which allow a parabolic variation of shear strain over the depth

of a beam have been proposed in connection with new finite elements developed for analyzing beam

behavior. Included in this group are the works of Yuan and Miller [63], Kant and Gupta [64], and

Kant and Manjunath [65], which are discussed in more detail later in this section.

The work of Lo, Christensen, and Wu [66] should also be mentioned. In this plate theory,

higher-order kinematic constraints are used for both longitudinal and lateral displacement. This

allows parabolic shear strain and linear transverse normal strain to develop through the thickness

of both homogeneous and laminated plates.

In the beam and plate theories just discussed, higher-order effects are accounted for by

imposing one kinematic constraint on the entire beam. Much analytical work has also been done

to develop methods which allow each layer in a composite beam some degree of independent motion.

This is achieved either explicitly with an independent kinematic constraint for each layer or less

directly by accounting for various kinds of strain energy and kinetic energy in each layer. In the

former approach, energy methods are often applied to obtain the governing equations, although

some works use strength-of-materials techniques for this purpose.
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The static response of sandwich plates was examined as early as 1947 by Reissner [67]. In

this paper, Reissner summarized earlier work done to formulate a new theory which accounts for

shear deformation (see [68,69]). Although not formulated explicitly in terms of a kinematic

constraint, as is the theory of Mindlin [39], both approaches yield basically the same results and

have come to be known as Reissner-Mindlin plate theory.

In addition to summarizing and clarifying his earlier work, in this paper Reissner extended

his theory to sandwich plates with equal outer layers, or facings. His treatment accounts for bending,

extension, and in-plane shear strain in the facings, and transverse shear strain in the core. The

results show that the form of the equation for sandwich plates is identical to that for homogeneous

plates provided that properties, such as the bending stiffness, are modified to account for the

composite nature of the sandwich plate. Therefore, solutions obtained for homogeneous plates can

be extended easily to sandwich plates simply by the proper modification of plate properties appearing

in the governing equation.

In 1948, Hoff and Mautner [70] examined the bending and buckling response of sandwich

beams experimentally and using an analytical technique which is quite representative of

strain-energy approaches. Their theory considers the extension and bending strain energies of the

facings as well as the strain energy associated with shear deformation and transverse compression

of the core. This approach ignores shear deformation in the facings as well as axial extension and

bending of the core. The governing equations come from application of a variational principle.

One of the earliest theories based on an explicit kinematic constraint for each layer was

developed by Yu [71] in 1959 for sandwich plates in plane strain. The variational theory treats

each layer essentially as a Mindlin plate, and involves the use of a correction factor. The theory is

limited to symmetric sandwich beams since it assumes the rotations of each facing are equal.
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Also in 1959, Kimel, Raville, Kirmser, and Patel [72] proposed a theory for the free vibration

of simply supported sandwich beams based on assumptions very similar to those of Hoff and Mautner

in [70]. In the theory of Kimel, et al., the facings are treated as homogeneous, isotropic thin elastic

plates which can be of unequal thickness. The core is considered to be an orthotropic elastic material,

but transverse normal strain in this layer is ignored. In addition, rotary inertia of all layers is ignored.

Unknown stresses and displacements are expressed in terms of Fourier-series expansions and the

governing equations are derived in terms of the unknown coefficients in the expansions using

variational principles.

In 1961, Raville, Ueng, and Lei [73] extended this approach to fixed-fixed sandwich beams.

Since the series expansion chosen for the lateral displacement does not satisfy the geometric

boundary conditions for a fixed-fixed beam, the energy formulation makes use of the Lagrange

multiplier method to enforce these boundary conditions.

The approach of Reissner [67] was extended to sandwich plates with orthotropic cores by

Cheng [74] in 1962. A governing equation solely in terms of the lateral deflection is derived in

addition to a system of equations in terms of the stress resultants, as given by Reissner [67].

Krajcinovic [75] has also developed a theory for symmetric sandwich beams which explicitly

states the independent kinematic constraint for each layer. As with Yu [71], each layer is allowed

an independent linear variation of longitudinal displacement. Unlike Yu, however, Krajcinovic

allowed compression of the core and expressed the through-thickness variation of all displacements

in terms of orthogonal mode shapes, and derived the governing equations using the principle of

virtual work. In [76], Krajcinovic extended his static theory to the free vibration of undamped

sandwich beams.
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In 1973, DiTaranto [77] proposed a static theory for nonsymmetric sandwich beams. The

theory, formulated using a variational principle, is based on assumptions very similar to other

strain-energy approaches. hi 1976, Rao [781 extended the work of DiTaranto [77] to cases where

the core is stiff so that the strain energy associated with its extension and bending cannot be ignored.

A method for estimating the natural frequencies of cantilever sandwich beams was developed

by Rubayi and Charoenree [79] in 1976. Although similar in general approach to the work of Kimel,

et Al. [72], and Raville, et Al. [731 in that unknowns are expressed as series expansions, it is simpler

in many respects. In particular, expressions for the shear strain of the core are obtained indirectly

from equilibrium considerations, rather than directly from giving the core an independent degree

of freedom which allows shear deformation to occur explicitly. As a result, all variables of interest

can be expressed in terms of the lateral deflection of the beam, which is given by a power series.

The series satisfies the geometric boundary conditions for a cantilever beam, but contains only three

terms. Therefore, estimates for natural frequencies are limited to the first three modes. Comparisons

with experimental results reveal that estimates are reliable for only the first two modes of response.

Although the present study is not concerned with damped vibrations, it should be pointed out

that the damped response of sandwich beams with viscoelastic cores has generated much interest

over the years. Most of the approaches employ a set of kinematic constraints and a variational

method similar to those of Yu [7 11 or DiTaranto [77], but allow the shear modulus of the core to

be complex to account for its viscoelastic properties.

One of the earliest such works is that of Kerwin [80], which provides a technique forestimating

the damping provided by a constrained viscoelastic layer added to a beam. This technique, which

uses a strength-of-materials approach, is limited to cases where the layer constraining the viscoelastic

layer is thin relative to the thickness of the undamped layer so that the bending strain of the

constraining laver can be ignored.
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A less restrictive theory for nonsymmetric sandwich beams was outlined in a paper published

by DiTaranto [81 ] in 1965. The theory, using the same assumptions as [77], accounts for the bending

stiffness of both outer layers, but ignores bending in the core. In contrast to the static equations

given in [77], the governing equations were derived using a strength-of-materials approach. The

method was later used by DiTaranto and Blasingame [82] to get results for specific cases of interest.

Mead and Markus [83] improved upon DiTaranto's work in [81] by explicitly incorporating

the lateral deflection as an unknown in the formulation of the problem. The authors show that the

resulting governing equation, also obtained using a strength-of-materials approach, is more general

by deriving DiTaranto's equation from it.

In 1968, Nicholas [84] examined a two-layer viscoelastic beam, rather than the standard

three-layer sandwich beam. He accounted for shear deformation and rotary inertia in each layer

by treating both layers as Timoshenko beams. The governing equations were derived using

Hamilton's principle.

Yan and Dowell [85] developed a method in 1972 for soft-core sandwich beams which uses

a kinematic constraint similar to Yu's [71], but which allows the facings to be of unequal thickness.

The method was modified by the authors in 1974 [86] to extend its application to sandwich beams

with stiff elastic, rather than viscoelastic, cores.

Another paper in this area is that of Sadisiva Rao and Nakra [87]. This work examines the

steady-state response of unsymmetrical sandwich beams and plates with viscoelastic cores to

harmonic loading. As in [72], unknown functions are expanded as Fourier series and governing

equations are in terms of the unknown coefficients in the series.

Though most of the interest in the literature is directed toward three-layer sandwich beams

or plates, some work has been done on multicore sandwich elements. In 1967, Liaw and Little [88]

developed a static theory for multilayered plates made of orthonopic cores sandwiched between
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thin isotropic facings. As in the work of Reissner [671 and Cheng [741, this treatment ignores axial

deformation of the cores and shear deformation of the facings. It also assumes that all stresses

within a layer are constant over the layer. The form c ' 'he governing equation is identical to that

of Cheng [741 for single-core plates, indicating that all single-core soutions are valid for multicore

problems as long as the properties of the multicore plate are accounted for properly.

The treatment of Liaw and Little [88] assurms that each core experiences the same amount

of shear strain. In 1968, Kao and Ross [89] extended the method of Hoff and Mautner [70] to

investigate multilayer sandwich beams in which each core can experience an independent shear

strain.

Vibration of multicore sandwich beams was investigated by Roske and Bert [901 in 1969.

The approach is similar to that of Kao and Ross [89], except that Roske and Bert ignored the bending

stiffness of the facings. However, the theory includ. - IL.h iteral displacement and rotary inertia

in the kinetic energy. The governing .quations are based on Hamilton's pnnciple.

The plate theory of DiSciuva [91] should be mentioned in the context of methods which allow

each layer to have independent kinematic constraints. In this theory, each layer is treated essentially

a. a Mindlin plate with the govtcrning equations coming from an energy formulation.

The analytical techniques described so far in this literature survey have contributed greatly

to an improved understanding of beam behavior, including the more complex behavior of composite

beams. However, as with all analytical techniques, they suffer from being limited to highly idealized

situations or require a fair amount of calculational effort to provide quantitative answers for problems

of interest. Today, with the assistance of the computer, it is possible to get good approximate results

numerically.

One of the most versatile methods in structural mechanics, as well as in other fields such as

heat transfer and fluid mechanics, is the finite element method [92]. Bending problems are readily
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treated by this method and the stiffness and mass matrices for a Bernoulli-Euler beam element are

easy to find in texts on the finite element method (e.g., see Chapters 5 and 15 of [93]). Perhaps the

first systematic development of the stiffness matrix for a Bernoulli-Euler beam was given by Argyris

in [941. In this work, elements of this matrix are obtained using the unit displacement method.

Although the stiffness matrix for this beam element is not given explicitly, enough examples appear

so that the components of the matrix can be deduced. It should be noted that [94] is one in a series

of papers by Argyris in collaboration with Kelsey which appeared in thejournal Aircraft Engineering

between October 1954 and May 1955. The complete collection of papers is available in [951.

In the course of developing a stiffness matrix for a plate element, Melosh [96] presented a

matrix which characterizes the stiffness of a beam element. It can be shown that this matrix is

equivalent to the one given in [93]. Melosh claimed that this matrix is equivalent to one developed

earlier by Turner, et Al. [97] to model spars and ribs in box wing structures. It is interesting to note

that this beam element accounts for shear deformation in the web of these structural elements.

The consistent mass matrix for a Bernoulli-Euler beam element, along with an explicit

expression for the stiffness matrix, can be found in a work by Archer [98] published in 1963. In

the same year, Leckie and Lindberg [991 combined the stiffness and consistent mass matrices for

a Bernoulli-Euler beam to obtain the dynamic stiffness matrix used to find natural frequencies of

such beams.

In the standard Bernoulli-Euler beam element found in these last two works, the nodal degrees

of freedom include the lateral displacement and its slope at each end of the beam. These four degrees

of freedom allow the lateral deflection to have a cubic variation in the longitu L. -1 direction of the

beam. Higher-order variations are also possible, some of which are discussed in 11001.

Many finite elements for Timoshenko beams have been proposed over the years. In 1965,

Archer [ 1011 applied the same techniques used in [981 to develop a finite element for analyzing the
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bending, buckling, and vibration of linearly tapered Timoshenko beams. The resulting element has

four degrees of freedom (two at each node) and uses cubic shape functions to interpolate the lateral

displacement. The theory behind this formulation is presented in more detail for a uniform

Timoshenko beam in 11021.

Kapur [103] developed another finite element for analyzing the free vibrations of linearly

tapered Timoshenko beams in 1966. In his approach, the lateral displacement is divided into bending

and shear components. Each component is allowed a cubic variation in the longitudinal direction,

requiring the element to have a total of eight degrees of freedom.

Severn [104] developed an element for static analysis in 1970 using an assumed stress

distribution. i ne stiffness matrix was obtained using the method developed by Pian [105].

Two Timoshenko beam elements were developed by Nickel and Secor [106]. The first has

seven degrees of freedom, four for lateral displacement and three for the rotation of the cross section.

This combination allows a cubic variation in lateral deflection and a quadratic variation in the

rotation. As a result, the contribution of both of these displacements to the shear strain has a quadratic

variation over the length of the beam. This choice of shape functions is one way to avoid shear

locking, a phenomenon which makes shear-deformable finite elements artificially stiff in

applications involving thin beams (see [107] and [1081).

The stiffness and mass matrices for this seven degree-of-freedom (DOF) element were derived

using a variational method. A four-DOF element was also developed by making use of a

simplification proposed by Egle 11091. By assuming that rotary inertia has a negligible effect on

shear deformation, it is possible to develop an element which accounts lFor shear deformation and

rotary inertia, but which only requires the four degrees of freedom associated with the cubic variation

of the beam's lateral deflection.
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In 1972, Davis, Henshell, and Warburton [ 1101 developed a four-DOF finite element which

can be used to examine frame structures composed of Timoshenko beam segments.

In [ 111 ], Thomas, Wilson, and Wilson provided a very good summary of the development

of Timoshenko-beam finite elements up to 1973. This work clears up much of the confusion evident

in the literature up to this time and corrects some of the typographical errors found in the previous

references. In addition, the paper proposes a new six-DOF element for a tapered beam which allows

a cubic variation in lateral deflection and a linear variation in shear strain.

This reference also points out that the four-DOF element developed by Nickel and Secor

[106] cannot adequately represent the clamped boundary condition in a cantilever beam because

of the nodal degrees of freedom chosen for this element. This problem was corrected by

Narayanaswami and Adelman [112] in 1974 by using rotation of the cross section, rather than the

slope of the lateral deflection, as a nodal degree of freedom.

In 1975, Thomas and Abbas [113] proposed an eight-DOF cubic element which allows the

natural boundary conditions associated with free and simply supported ends, as well as geometric

boundary conditions for all end conditions, to be imposed.

An element allowing a quintic variation in the lateral displacement and a quartic variation in

the rotation was developed by Dawe [ 114] in 1978. The eleven degrees of freedom required initially

were reduced by Dawe to six degrees of freedom using a simplification similar to that of Egle [ 109].

The higher-order shape functions give the element a very rapid rate of convergence.

Finite elements based on higher-order kinematic constraints which allow the beam's cross

section to warp are just beginning to appear in the literature. One of the first such elements was

developed by Heyliger and Reddy 11151. The element is based on the third-order kinematic

constraint proposed by Levinson [561, but corresponds to the theory of Bickford [581 since the

element is developed using an energy formulation. The element has eight degrees of freedom which
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allow a cubic variation in lateral deflection and linear variations in rotation and axial displacement.

A finite element for the analogous plate theory, which can accommodate laminated plates, is

discussed in [621.

A general third-order kinematic constraint forms the basis for the static element developed

by Yuan and Miller [63]. The element allows a cubic variation in lateral deflection and quadratic

variations in longitudinal and rotational quantities, which requires a total of sixteen degrees of

freedom.

Another finite element based on a third-order kinematic constraint was developed by Kant

and Gupta [64]. This kinematic constraint allows linear transverse normal strain as well as parabolic

shear strain through the thickness of the beam. The element is formulated for static and dynamic

calculations.

More recently, Kant and Manjunath [65] developed a family of elements for the static analysis

of composite beams. This family includes elcments based on first, second and third-order kinematic

constraints imposed on the entire composite beam. Comparisons with the exact elasticity solution

of Pagano [9] are generally favorable, but also reveal that an independent kinematic constraint for

each layer may be needed to model properly the longitudinal displacemtnt and the associated normal

stress for small span-to-depth ratios.

This requirement was alluded to by Pryor and Barker [116] in 1971, but the authors were

concerned that the increased number of degrees of freedom needed to allow independent motion

in each layer would discouiage the use of such elements. However, such approaches have enjoyed

some popularity since the late 1970's.

In 1977, Epstein and Glockner [117] presented a theory which allows each layer in a

multilayered shell to be modeled as a collection of straight line segments called directors. The

theory, based on the use of multi-directors and formulated using a variational approach, allows a
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linear variation of longitudinal displacement within layers and continuity of displacement between

layers. The approach was used to study deep and multilayered beams [ 118] and has been used to

formulate a static finite element for multilayered and thick plates [ 1191. An element for multilayered

elastic and viscoelastic shells has been developed also [ 120].

In addition to this approach, the theory of DiSciuva [91] has been used to develop a static

finite element for multilayered plates [121]. Also, Chaudhuri and Seide [122-125] have developed

a number of static finite elements which allow a linear variation of in-plane displacements within

each layer. Developed initially to investigate plates with perforations [ 122] or part-through holes

[123], the approach was later extended to thick, laminated plates in [124] and [125].

One of the earliest multilayer beam elements was presented in a work by Khatua and Cheung

[126] in 1973. The basic assumptions behind the element are very similar to those given in the

analytical approach of Kao and Ross [89]. The mass and stiffness matrices are obtained from a

variational procedure.

Much more recently, Yuan and Miller [127,128] developed two multilayer beam elements.

These elements are obtained essentially by stacking single elements for each layer vertically using

a technique discussed by Miller in [ 129] and [ 1301. References [ 129] and [ 130] apply this technique

to cases involving plates stiffened by eccentric beams. As pointed out in these papers, shape

functions for variables associated with lateral and longitudinal displacement must be chosen

carefully. In addition to avoiding the shear locking mentioned in [107] and [108], the proper

combination of shape functions is absolutely essential to prevent a mismatch in longitudinal

displacement at the interface between two adjacent layers. Such a mismatch causes the errors noted

by Gupta and Ma [131] and Balmer [132]. Eliminating these errors provided the motivation for

the work documented in [129] and [130] and led eventually to the elements discussed in [127] and

[1281.
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The element presented in [ 127] allows each layer to behave like a Timoshenko beam; in [ 1281,

the third-order kinematic constraint discussed in [631 is imposed on each layer. The latter approach

appears to be the highest-order multilayer kinematic constraint presented in the literature to date.

1.3. Objectives, Scope and Approach

As stated is Section 1.1, the goal of this present effort is to develop shear-deformable finite

elements which can be used to calculate the natural frequencies of composite beams. The first

objective of this effort is to derive the stiffness and mass matrices for these elements and incorporate

them into computer programs which can be used to ascertain the natural frequencies of composite

beams in free vibrations. This work considers elements which impose a single kinematic constraint

on the entire beam, as well as elements capable of enforcing an independent kinematic constraint

on each layer within a composite beam.

This study uses the terms "simple beam element" and "stacked beam element", respectively,

to differentiate between these two kinds of elements. The term "stacked beam element" alluues

to the fact that this kind of element is actually made up of a series of simple elements stacked in a

vertical array. The resulting element is able to more accurately model composite beam behavior

by assigning an independent kinematic constraint to each element in the stack. It should be noted

that the terms "simple" and "stacked" refer only to the way in which kinematic constraints are

imposed on a beam element and imply nothing regarding the homogeneity of the beam since

homogeneous and composite beams can be modeled by both simple and stacked elements.

The second objective of the investigation is to evaluate the performance of the elements to

determine when higher-order kinematic constraints, including the use of a stacked element rather

than a simple element, are needed to account for the effects of shear deformation on the dynamic

response of composite beams.
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This effort is limited to free vibrations of straight composite beams of uniform cross section

in a state of plane stress or plane strain. Composite beams of interest include those of sandwich

or fiber-reinforced laminate construction made of linear, elastic materials. Geometric nonlinearity,

damping, and transverse normal strain are not considered in this work. In addition, the coupling

between longitudinal strain and lateral strain caused by Poisson effects is ignored in the

two-dimensional constitutive relations used. However, both isotropic and orthotropic materials are

considered and the elements can accommodate symmetric and nonsymmetric laminated

configurations.

The first objective is achieved in part by extending the work of Yuan and Miller [63] for

static, homogeneous beams to the dynamic analysis of composite beams. This involves deriving

the stiffness and consistent mass matrices for an element capable of imposing a third-order kinematic

constraint on a symmetric or nonsymmetric composite beam. The consistent mass matrices for the

static stacked elements developed by the same authors in [ 1271 and [ 128] are derived in this study

also. In addition, dynamic simple elements based on Bernoulli-Euler, Timoshenko, and

Levinson-Bickford beam theories are generated as well. Chapter 2 of this work discusses the theories

associated with these beam elements. The finite element formulation of these theories is presented

in Chapter 3.

The evaluations associated with the second objective involve comparisons with exact

elasticity solutions similar to that of Jones [16] and Kulkarni and Pagano [17], but for composite

beams in plane stress rather than plates in plane strain. In addition, comparisons against analytical,

numerical, and experimental data available in the literature are made. Chapter 4 examines the

accuracy and convergence properties of the elements, and presents the results of the evaluations

made against data available in the literature. Finally, Chapter 5 summarizes the results and

conclusions of this investigation.
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2. COMPOSITE BEAM THEORIES

2.1. Assumptions

As stated in Chapter 1, this study is limited to the free vibration of straight, prismatic composite

beams in a state of plane stress or plane strain. As a result of these limitations, only the inplane

bending and axial responses of composite beams are considered. These inplane responses include

the coupling between the bending and axial modes which is characteristic of nonsymmetric

composites. Bending out of the plane and torsion are ignored. Also, the behavior of curved beams

or beams of variable cross section is not addressed.

In addition, only linear, elastic response is considered. Material nonlinearity associated with

non-Hookean deformation, and geometric nonlinearity associated with large displacements are not

included in the formulation of the beam theories. The damping caused by viscoelastic behavior is

ignored as well. Although both isotropic and orthotropic materials are treated, the coupling between

longitudinal and lateral motion caused by Poisson effects is ignored, greatly simplifying the

two-dimensional constitutive relations.

Finally, lateral displacement is assumed to be a function of the longitudinal coordinate only.

This assumption eliminates the transverse normal strain associated with variations of this

displacement in the lateral direction.

Although these assumptions appear to be quite restrictive, they greatly simplify the resulting

theories. The effect of these assumptions on the accuracy of the results is assessed in the evaluations

presented in Chapter 4.
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2.2. Coordinate System

Figure 2.1 shows the coordinate system, sign conventions, and major variables associated

with the beam theories examined in this investigation. The x-axis seen in Figure 2.1a coincides

with the centroidal axis of the beam. The beam is of length L and depth d, is in a state of plane

stress, and has a rectangular cross section of unit width. The distance from the centroidal axis to

either outer fiber is given by c, which is equal to half of the depth. The sign convention pictured

in Figure 2.1b is similar to the one generally used in elasticity theory to denote positive stresses

([21, pp. 3 and 4).

In general, the beam is composed of N layers, starting with the first layer at the bottom of the

beam. Both symmetric and nonsymmetric configurations are allowed. Symmetric beams must

possess both geometric and material symmetry with respect to the x axis. That is, layers above the

x axis must represent a mirror image of those below the axis. In addition, the material properties

of matching layers above and below the axis must be identical. Any deviation from these symmetries

results in a nonsymmetric beam.
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y,v L = length (or span) of beam

d = depth of beam

N = total number of layers

NT

d
3
2 X,U

x = longitudinal coordinate y = lateral (or transverse) coordinate

u = longitudinal displacement v = lateral displacement
of a typical point of a typical point

(P") Displacements and geometric variables.

G

_a x = normal stress in x direction

(x (Yy = normal stress in y direction

txy = shear stress in x-y plane

(b) Stresses.

Notes: 1. Beam in state of plane stress with
cross section of unit width.

2. Positive rotation in

counter-clockwise direction.

Fig. 2.1. Beam sign convention.
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2.3. Constitutive Relations

The constitutive relations for an orthotropic material in a state of plane stress are given in

Equations (2.1) (see [25], pp. 45-47):

=y ( y + v Y ) (2.1)

ly - vxyVy:

txy =GX7y

V Vyx
E. E,

where

o. = normal stress in the longitudinal (x) direction

Gy = normal stress in the lateral (y) direction

" = shear stress in the xy plane

€ = normal strain in the longitudinal direction

Ey = normal strain in the lateral direction

-y, = shear strain in the xy plane

Ex = Young's modulus in the longitudinal direction

Ey = Young's modulus in the lateral direction

G = shear modulus in thexy plane

VXY = Poisson's ratio for lateral strain caused by strain in the longitudinal direction
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v = Poisson's ratio for longitudinal strain caused by strain in the lateral direction

The same equations can be used for a state of plane strain if the material properties are replaced by

the starred variables defined as follows:

Ex

E;-YV + VVy

EC - 1vv (2.2)

Vyx + VyV,
V~yx - V zV z

G, = G

where

EC = equivalent E. for material in plane strain

E: = equivalent EY for material in plane strain

v . = equivalent vy for material in plane strain

vy = equivalent vy, for material in plane strain

v, = Poisson's ratio for longitudinal strain caused by strain perpendicular to the xy plane

Vyz = Poisson's ratio for lateral strain caused by strain perpendicular to the xy plane

v. = Poisson's ratio for strain perpendicular to thexy plane caused by strain in the longitudinal
direction

v = Poisson's ratio for strain perpendicular to the xy plane caused by strain in the lateral
direction

Similar relations for an isotropic material are given as
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_ E
1V 2 (F- + v F-Y)

E
- ( Ey + v EJ (2.3)

EG -
2(1 +v)

where

E = Young's modulus

v = Poisson's ratio

G = Shear modulus

and

E

1 -v2

Vv* = (2.4)
1-v

G*= G

where

E* =equivalent Young's modulus for material in plane strain

V = equivalent Poisson's ratio for material in plane strain

G * = equivalent shear modulus for material in plane strain

The linear strains associated with small deformation are defined as
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,= u,

Cy Vy

u,y +v,. (2.5)

where

, =displacement in longitudinal direction

v = displacement in lateral direction

,x = partial derivative with respect to x

y = partial derivative with respect to v

If the couTling between longitudinal and lateral strain caused by Poisson effects is ignored,

the relations for plane stress or plane strain reduce to the expressions given in Equations (2.6) and

(2.7) for orthotropic and isotropic materials, respectively:

ay= Ey (2.6)

TXY Gly-

(Y E F,,

Ty = Ey (2.7)

S= G y,

G = E/2

As can be seen in these equations, all the properties for the orthotropic material are independent,

whereas the isotropic material has the same Young's modulus in the longitudinal and lateral

directions, and the shear modulus is related to its Young's modulus.
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A final special case is given as

= Ee

= Gy (2.8)

where

t5 = yxy

y = T

E = Young's modulus in longitudinal direction

G = shear modulus in xy plane

In this case, transverse normal stress and strain are ignored so that only normal stress in t'-.

longitudinal direction and shear stress are considered. As a result, the subscripts differentiating

longitudinal normal stress and strain from transverse normal stress and strain can be dropped. In

addition, subscripts on the shear stress and strain are also discarded, making the constitutive relations

that much easier to write. This final case applies to all the beam theories examined in this

investigation and the constitutive relations given by Equations (2.8) are used whenever appropriate

to simplify the resulting equations somewhat.

It should be noted that even though the coupling between longitudinal and lateral strain

associated with Poisson effects is ignored in alii the beam theories, the relation between the shear

modulus and Young's modulus for an isotropic material of arbitrary Poisson's ratio given in

Equations (2.3) can still be modeled by an orthotropic beam theory. This is possible since an

orthotropic theory allows these moduli to be specified independently such that the ratio given in
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Equations (2.3) is satisfied. Although this approach still ignores the effect Poisson's ratio has on

the normal stresses and strains, it does account for the important part this ratio plays in the relation

between the shear modulus and Young's modulus for isotropic matelals.

2.4. Kinematic Constraints

As suggested by Basset [48], variables such as the inplane displacements can be expressed

as power series expansions. For the variables and coordinate system defined in Figure 2.1,

expansions for longitudinal and lateral displacement take the form

u(x,y,t) = Ao(x,t)+Al(x,t)y+A 2(x,t)y2+

v(x,y,t) = Bo(x,t)+B(x,t)y+B,(x,t)y 2+... (2.9)

where

u(x,y,t) = longitudinal displacement

v(x,y,t) = lateral displacement

x - longitudinal coordinate

y = lateral coordinate

t time

A,(x,t) = unknown functions ofx and t

B,(x,t) = unknown functions of x and t

The various theories discussed in this section are obtained by assuming the actual

displacements given by the series expansions can be approximated by truncating the expansions.

The truncated series are then used as kinematic constraints which are imposed on the entire composite

beam. Using independent kinematic constraints within each layer is discussed in conjunction with
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the finite element formulation of stacked elements in Chapter 3.

As stated in the assumptions outlined in Section 2.1, all the beam theories considered in this

study ignore the transverse normal strain associated with variations of the lateral displacement in

the vertical direction. Therefore, the kinematic constraint for lateral displacement for all the theories

contains only one term,

v(x,y,t) = W(x,t) (2.10)

where

W(x, t) unknown function of: md t corresponding to displacement of beam's centroidal
axis.

The difference in the theories is caused solely by changes in the kinematic constraint imposed on

the longitudinal deformation of the beam.

In this study, the highest order of y present in the kinematic constraint for the longitudinal

disp'- 2ement is used to denote the order of the kinematic constraint and its associated theory. For

example, a kinematic constraint which contains at most linear terms is referred to as a first-order

kinematic constraint; a third-order constraint must contain a cubic term in addition to other possible

lower-order terms.

For Bernoulli-Euler beam theory [221, the assumption that initially plane sections remain

plane after bending limits the kinematic constraint for longitudinal displacement to the first two

terms shown in Equations (2.9). The additional assumption that sections initially perpendicular to

the neutral axis remain perpendicular after bending results in the kinematic constraints

u(x,y,t) = U(x,t)-W'(x,t)y

v(x,y,t) = W(x,t) (2.11)
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where

U(x, 0 = unknown function of x and t corresponding to axial motion of the centroidal axis of
the beam

= partial derivative with respect to x

This equation also gives the constraint imposed on the lateral displacement as do all the

kinematic-constraint equations. These assumptions lead to a theory which cannot account directly

for shear deformation since shear strain is ignored:

7 = v,, +u,y = W'(x,t)-W'(x,r) = 0 (2.12)

In Timoshenko beam theory [29], sections plane before bending remain so after bending;

however, planes initially perpendicular to the neutral axis are not constrained to remain

perpendicular after bending. Therefore, the first-order term in the kinematic constraint for

longitudinal displacement is allowed to be independent of the lateral deflection:

u(x,y,t) = U(x't)-(x'ty

v(x,y,t) = W(x,t) (2.13)

where

4D(x, t) - unknown function corresponding to rotation of beam cross sections

The resulting shear strain

7 = V(x,t)-4(x,t) (2.14)

is constant over the depth of the beam.
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Trying to model the behavior associated with some other distribution of shear strain requires the

use of a correction factor, as discussed in [29] and [44-47].

Obtaining other variations of shear strain directly requires higher-order terms in the

longitudinal kinematic constraint to account for the cross-sectional warping induced by shear

deformation. In Levinson's beam theory [56], the third-order term is chosen such that the shear

strain vanishes at the upper and lower surfaces of the beam, as prescribed by the boundary conditions

for free vibrations. The kinematic constraints for this theory are:

u(x,y,t) = U(x,t) -'(x,t)y [W(x,t)(Xt)]y 3

v(x,y,t) = W(x,t) (2.15)

where

c = distance from centroidal axis to upper and lower fibers

The resulting shear strain is

y = [W'(x,t)-'(x,t)][1 -(y/c) 2] (2.16)

The parabolic nature of the shear strain is apparent in Equation (2.16).

Finally, the general third-order theory of Yuan and Miller [63] allows warping, but includes

a second-order term as well as a third-order one:

u(x,y,t) =)-(X,t)y_-dO2(x,t)y2-(D3(x t)y 3

v(x,y,t) = W(x,t) (2.17)

where
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D I(x,t) = unknown rotational function

2(x, t) = unknown function of x and t which models second-order warping
of beam

4 3(x, t) = unknown function of x and t which models third-order warping
of beam

Although no attempt is made to enforce the boundary condition for shear strain on the lateral surfaces

of the beam, this kinematic constraint leads to a more general variation of shear strain which includes

a constant, linear, and quadratic term

y = WV'(x, t) - D(x,t) - 2(2(x~t)y -33xty (2.18)

2.5. Governing Equations

As stated in Section 1.2, the governing equations for the unknown functions contained in the

kinematic constraint for a beam theory can be found using either a direct strength-of-materials

approach or an energy method. This investigation uses an energy method, namely Hamilton's

Principle, to derive the equations for all the theories. Since the energy formulation of Levinson's

beam theory was first accomplished by Bickford [58], the theory based on Levinson's kinematic

constraint is referred to as Levinson-Bickford theory in this study.

According to Langhaar ([191, p. 239), Hamilton's principle for a conservative system states

that "among all motions that will carry a conservative system from a given initial configuration X0

to a given final configuration X, in a given time interval (to,t), that which actually occurs provides

a stationary value to the integral a," where a is called the action and is given by
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a = Ldt

L = T-V (2.19)

where

L = Lagrangian

T = kinetic energy

V = potential energy

to, = start of time interval

ti  = end of time interval

Using this principle provides a very straightforward way of deriving the equations of motion

and boundary equations for a continuous system, such as a beam. Once the kinematic constraint

is chosen, the kinetic energy and potential energy can be expressed in terms of this constraint. After

the expressions for these energies are substituted into the Lagrangian defined in Equation (2.19),

variational calculus can be used to force the action to be stationary.

For the beam theories discussed in this study, the Lagrangian is obtained from a line integral

L = Fdx (2.20)

where

F = integrand of line integral used to obtain the Lagrangian, L
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Therefore, the action involves a double integral, with integration performed once over time and

once over the longitudinal coordinate. As discussed by Langhaar ([191, pp. 92-96), the action for

a double integral is stationary when the differential equation

x rr +Ox---5 ~lr C + - + (tIt = 0 (2.21)

is satisfied, where

= unknown function ofx and t appearing in beam kinematic constraint (e.g., U(x,t),AD(x,t),
or W(x, t))

= partial derivative with respect tox

= partial derivative with respect to t

subject to the boundary conditions

F F ax ( IF 0

and

at x = 0 and x = L (2.22)

where

8y = variation in i

=variation inV
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Applying Equation (2.21) for each dependent variable in the kinematic constraint generates the

equations of motion for the beam theory. The required boundary conditions are obtained from

Equations (2.22).

It should be noted that the boundary conditions specified by Equations (2.22) are expressed

as the product of two terms. The first term, preceded in each equation by a variational sign, represents

a forced or geometric boundary condition. The second term, placed in brackets, is a natural boundary

condition.

Beam boundary conditions Boundary conditions for each theory

(at x = L) Bernoulli- Timoshenko Levinson- Third-
Euler Bickford order

Free No forced
boundary
conditions

Simply supported

v(L,O,t) = 0 W(L,t) = 0 W(L,t) = 0 W(L,t) = 0 W(L,t) =0

Pinned u(L,O,t) = 0 U(Lt) =0 U(L,t) = 0 U(Lt) = 0 U(L,t) =0

= an v(L,0,t) = 0 W(L,t) 0 W(L,t) = 0 W(L,t) =0 W(L,t) =0

Clamped u(L,y,t) = 0 U(L,t) = 0 U(L,t) = 0 U(L,t) =0 tJ(L.t) = 0

v(L,y,t) = 0 W(L,t) =0 W(Lt) = 0 W(L,t) =0 W(Lt)= 0

W'(Lt) =0 0 (Lt) =0 W'(L,t) =0 0 i (Lt) =0

0(Lt) =0 (i = 1,2,3)

Fig. 2.2. Forced boundary conditions.

Forced boundary conditions correspond to explicit limitations placed on the displacement at

the ends of a structure. The dependent variables of the beam theories cannot violate these limitations.

Figure 2.2 summarizes the forced boundary conditions for the theories and end conditions of interest

in this study. Natural boundary conditions govern the stresses or stress resultants present on ends
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whose displacements are not restricted. Since it is not possible to specify both kinds of conditions

at a boundary, the dependent variables of a beam theory must satisfy either a forced or a natural

boundary condition at each end.

The kinetic energy for general planar motion is given by

T 1 fp( 2 + 2)dV (2.23)T -2

where

p = mass density of material

V = volume of material

This expression accounts for motion in the longitudinal and lateral directions and can account for

the rotary inertia caused by variations of longitudinal motion in the lateral direction.

An expression for the potential energy associated with the internal strain energy of an

orthotropic beam in plane stress is given as

V f 2(oe+try)dV

I f [E(e)2 + G()2 ]ddV (2.24)

Since transverse normal strain and the coupling between lateral and longitudinal motions caused

by Poisson effects is ignored, the constitutive relations from Equations (2.8) are used. The resulting

expression accounts for the strain energy caused by axial and bending response, including the effects

of shear deformation.
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Once a kinematic constraint for a particular beam theory is substituted into Equations (2.23)

and (2.24), the variables appearing in these equations become functions of x and t only, since these

variables are assumed to be constant over the width of the beam and their variations in the y direction

are prescribed. Therefore, the volume integrals seen in Equations (2.23) and (2.24) can be expressed

as line integrals by making use of the definitions

P, f p(y)y"dA

Q.= JE(y)y"dA (2.25)

V,, f G(y)y"dA

where

P, Q, v, = composite beam properties for inertia, longitudinal stiffness, and shear stiffness,

respectively.

A = area of beam's cross section

n = 0,1,2....

and

N
P. -- 5.Pil["),

i=1

N

Q.= XEI["  (2.26)
i=1

N

n =
w=1

- rn )M+1 _ ( )fl+l}

where
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p, = mass density of i-th layer

E, = Young's modulus of i-th layer

Gi = Shear modulus of i-th layer

Il,) = n-th area moment of i-th layer

yi = distance from centroidal axis to bottom of i-th layer

y,+ = distance from centroidal axis to top of i-th layer, or bottom of (i-th + 1) layer

N = total number of layers in composite beam

Equations (2.25) correspond to a general nonhomogeneous material whose properties vary

in the lateral direction only. Less general expressions for a layered composite beam with a

rectangular cross section of unit width are given in Equations (2.26). The latter set of equations

makes use of the numbering scheme pictured in Figure 2.1. It should be noted that Pn, Q,, and V"

for a symmetric beam are all zero for odd values of n.

Substituting the kinematic constraint for a Bernoulli-Euler beam given by Equations (2.11)

into Equations (2.23) and (2.24) yields the expressions for kinetic energy

T = f P(y)[(0_WY)2+W21dV (2.27)

and potential energy

V = E (y)(U'- W )dV (2.28)
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Employing the definitions given in Equations (2.26) and combining the kinetic energy and potential

energy properly results in the Lagrangian

L = { {[P0
2 - 2P W'+ p(W) 2 + PoW21

-[Qo(U') 2 - 2Q, U'W" + Q2(W") 2] }dx (2.29)

Applying the operations specified in Equations (2.21) and (2.22) to the integrand of this expression

yields the governing equations

(QoU"-PoO)-(Q1W"'-PW') = 0

(Q1U' - P10') + (Q2W. - 2 ' + P0W) = 0 (2.30)

and boundary conditions

8U[QoU'-QW'" = 0

)W[-(Q1U"-P1O)+(Q2W"'-P2W'*)] = 0

and (2.31)

5W'[-Q 1U'+Q2W'I = 0

at x = 0 and x = L

A similar procedure can be used to find the governing equations and boundary conditions for

the other beam theories. The results of such an effort are given in Equations (2.32) through (2.36),

(2.37) through (2.41), and (2.42) through (2.46) for Timoshenko, Levinson-Bickford, and the general

third-order theory, respectively. The following five equations apply to Timoshenko beam theory:

T -I 2P(Y) [(U -IY) 2 +W 2]dT' (2.32)
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where

k =shear correction factor

2 - 2P U(D+ P4 2D+ Pw 2

-1 QJ(U')2 2Q I U '1Y + QIV 2 1(2.34)

-k V1 (w' - (1))2 } dx

(Q~~U PO0 )-( 1C'-P4

-(Q1 U" -P1 IJ) +(Q2,4V'-P 2 ) +kV(,(W' -1) 0 (2.35)

kV(W"vl-d7') -P 0  o

6UIQ 0U'-Q1 VDI =

6(DI-Q 1 u'+Q2 qI/! 0

and (2.36)

,itI x = 0 and x = L

Trhe following five equations pertain to Levinson-Bickford beamn theory:

I , . 1 . 2
T- (V' - (D)V + w.(2.37)
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v f fE (y) [U'-Y (V I ())

+.'fG(y)r(W'-()(1 -y 2 /C 2)] 2 q (238

2 (2.31

2 3) +-P6 (W' - ()) + 2]

3c' 9c,

- QUk'- 3 C2 3 '(V - D') + Q 2 ((D) 2  (2.39)

3C 9C)+-Q6(W"-

c c
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(Q0U" - PooJ) - (Q("- P141) [ Q3(Wff'"'- -P 3 (W' -6 0

" I (V"' - 20") - - 4VV ] (2.40)

3~ 02

( C Q 6t"' - 1 ") - P6(W!())](.0

3cc

9C4 [Q604"" ... .(D"... P60~" - ('

6U[Qou - QI1 )- ~pQ 3('V" - (D)] =0

-Q IU'+ Q2 c'+ I Q3 U'±-I Q4 (W" - 24) - IQ 6 (Wp" (1' 0
3c2 3C2 9C4

*f (U- PU) + -Q(D PA~ + I[Q 6(W"' - 4$!') - P60W'- 6)]

- v V 4=W D 0 (2.41)

and

8V' I-Q 3U'+ Q4(D'± I IQ 6(W"-(D')I 0[3c' I

at x = 0 and x =L
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The following five equations are associated with the general third-order beam theory:

T 1 (y)[(U _ by-_ by2 - (3y3]2+W2]d '  (2.42)

V = fEO,)[U' -Vy -(zy v 3Y3]2dV

+1 G (y) [(VV' - 0) - 202y - 3(D3 Y2] 2d V  (2.43)
2(.,

S- {[po(.0 2 _ 2)p, ( (b , - 2P2( 2~ - 2P3 c3

2

+Q2 1 + 2P 3 41d2 + 2P4 ' 1'3

+p2 2P4 (b2 O2

+ 2P5 b2 3 + P64~+p~

_Q(,2- 2Q IU"'V, - 2Q2U'(1' 2 - 2QU'F1'3  (2.44)

+1Q'1 2  + 2
Q4D 2 + 2Q 5 1'21' 3 + Q6 3

_[Vo(W, _ )2 - 4V,(W' - 4P1)D2 - 6V 2(W' - D))D3

+4V2(1)2 + 12V 3(1)41 3 + 9V,4 2] Idx
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(QOU" -POO) -(Q1 DI" 1 -P 1 4 l) -(Q 2Fl" 2 - 22- (Q3(D"3 - P3 3) =0

-(II-P P1 ) + (4"I - 211)+ (Q30" 2 - P34 2)

(Q(3- P4( 3) + V(W' - ,- 2VD 2 - 3V 2413 = 0

-(Q 2U " -P 2 ) +(Q 3 Y'1 -P 3 4)1) +(Q 4 (D"2 - PAd2) (2.45)

(Q(3- P543) +2V,(W' - ,) - 4V2 D2 -633 = 0

-QU" - P30J + (Q4(V'1 - P4))+ (5D2- P54)2)

+(6l"- P64 3) +3V 2(V' - I,-6V )- 9V44D3 = 0

VOW- ',) - P0  - 2V71 '2- 3V2Fl' 3 = 0

8UIOU-Ql')l-Q(l'2-3('3 0

501I-QI U+ Q24D'I + Q3 (',2 + QA('31 0

8021Q2U+ QA3V1 + Q4(l'2 + QS5Cb' 3] 0

80 Q *+ Q4D1'1 + Q5D'),2 + Q6Dl' 3] 0 (2.46)

and

8W[V(W'-0j)-2V(D12 -3V 24 3] 0

at x = 0 and x =L

The equations for free vibrations are obtained by assuming harmonic motion for all unknown

dependent displacement variables, as shown for the generic displacement function

141(,) '4f1)e(2.47)

where

=natural circular frequency of harmonic motion
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This assumption reduces all the governing equations and boundary conditions to ordinary differential

equations by prescribing the nature of the time dependence of variables in the equations. The

resulting governing equations for Bernoulli-Euler, Timoshenko, Levinson-Bickford, and the general

third-order theories are given, respectively, as follows:

(QoU '"+ cO2 PoU)-(QIW"" +wCo2P1 W") = 0

(Q1U"' + o2PU') + (Q2W I'l +0 2PW"- 02POW) = 0 (2.48)

(QoU '" + o.)2PoU ) - (Q(Dp'"+ PDo) = 0

-(Q 1U" + ,) 2PIU) + (QD" + o2 P2( + kVo(W' - ) = 0 (2.49)

kVo(W"-_,)+0o2Po W  = 0

(QoU" + o 2PoU) - (Q(," + o 2P,) - I [Q,3(W"' - (D") + co2P 3(W' - (D) = 0
1

-(Q, U" + co2P, U) + (Q2 ," + 0)2P2 ,) +c (QU" + t2P3U)
3c2

11 ,

+ [Q4(W"" - 20") + o2P 4(W' - 20)] - 1c [Q6(W"' - (") + o2P6(W' - ()]

V - V 2  WV4 ,(W'-) = 0 (2.50)

(Q3U"' + (o2P3U') - (Q4 "' + 0 2P4D') - [Q6 (W"" - (D:..) +0 c 2P6(W" -4(')]

V0 2 4) -¢,')+oP W = 0
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(QoU'" + 02poU) - (Q ", + cO2P10 1) -( "2 +(02p2(D2)

-(Q34) +0 2p30 3) = 0

(Q1U" + (02P1U) + (Q2(" + W oP 2(1) + (Q31)" 2 + c)2P3(D2)

+(Q4 O "3 + Co2P4 ) + V'o(W' - 01) - 2V1(42 - 3 VA, 3 = 0

M2U" + (02P2U) + (Q3(VI'1 + p3(PI)) + (QAD" 2 + 0 2p4(1'2) (2.51)

+(Q5A" 3 + 0 2PA, 3) + 2V,(W' - TD) - 4V 2 02 - 6V3A 3 = 0

-(Q 3U" + 2 P3U) + (QAD"'1 + (02P,'I) + (Q5A" 2 + 02P5A 2)

+(Q6O 3 + c02P6 t 3) + 3V,(W'- 1))-6V3(1)2 -9V.3 = )

0(IV, - ('D) + o02PoV - 2VI(D'2 - 3V2(D'3 = 0

The natural boundary conditions for Timoshenko and the general third-order beam theories

given by Equations (2.36) and (2.46), respectively, are unaffected by the assumption of harmonic

motion specified by Equation (2.47). In addition, the forced boundary conditions for all beam

theories remain the same. However, the natural boundary conditions for the Bernoulli-Euler theory

)W[-(QlU", + (P 1U) + (Q2W"' + (12P2W')] = 0

at x = 0 and x = L (2.52)

and Levinson-Bickford theory

8W{- (Q3U" + (°2P3U) +-I (Q4d°" + ( 2PA'd) + I- [Q6(W"'-.V") + 02 Pr(W'- ()]
3C2  3C2 9C4

VO-22 2+1 4W D 0 (2.53)

at x = 0 and x =L
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're not the same. It should be noted that only the boundary conditions affected by the assumption

of harmonic motion are given in Equations (2.52) and (2.53).

As can be seen in the governing equations for the Timoshenko beam theory, a shear correction

factor, k, is incorporated into the expression for shear strain energy to allow this first-order theory

to better model the strain energy associated with shear deformation [29,44-47]. Ultimately, this

correction factor has some effect on the governing equations, as seen in Equations (2.35) and (2.49).

The coupling between the axial and bending responses possible in nonsymmetric beams is

apparent in all the governing equations. As can be seen, this coupling exists only when the values

for P., Q,,, and V,, are nonzero for odd values of n, a condition that is not possible in symmetric

beams.

Finally, the increasing complexity of the theories is obvious. Simple solutions for these

theories appear to be limited to two special cases. The first is symmetric or nonsymmetric beams

with simply supported end conditions. For this case, solutions can be obtained fairly easily for all

theories by assuming the following displacement field:

m~tx
4I'L(X) = Cocos L7E

yw(x) = CwsinTX (2.54)L

where

W,,(x) = unknown function of t appcaring in the kinematic constraint for longitudinal
displacement

tw(x) = unknown function of x appearing in the kinematic constraint for longitudinal

displacement

C, = unknown coefficient
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C4. = unknown coefficient

m = mode number (1,2,3, etc.)

The second case is the free vibration of symmetric Bernoulli-Euler and Timoshenko beams under

a variety of end conditions.

Unfortunately, none of the theories seems to admit easily obtainable solutions for all cases

of interest. However, approximate solutions for both symmetric and nonsymmetric beams under

simply supported and other end conditions can be obtained readily if the theories are given a finite

element formulation. The desire to obtain such solutions provides the motivation for the finite

element formulations discussed in Chapter 3.
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3. FINITE ELEMENT FORMULATION OF

COMPOSITE BEAM THEORIES

3.1. The Finite Element Method

3.1.1. Overview

In general, the finite element method assumes that the actual response of a continuous system,

such as a beam, can '-e approximated by a collection of elements which represents a discretized

model of the continuous system. This assumption transforms a problem with infinite degrees of

freedom into one involving a finite number of degrees of freedom. An example of a cantilever

beam model of an airplane wing is given in Figure 3.1. As can be seen in this figure, the continuous

system is itself an abstract model of the actual physical system.

aerodynamic
loading

weight of
engine

(a) Airplane in flight. (b) Idealized beam model of wing.

nodal force

node element

(c) Finite element model of idealized bcam.

Fig. 3.1 Finite element model of idealized beam.
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Many different approaches can be employed to develop the elements used in the discretized

model, the most prominent of which are outlined nicely in a paper written by Pian and Tong [1331

in 1969. In general, elements based on displacement methods, force methods, and mixed

force-displacement methods have been formulated. In the first approach, nodal displacements are

the primary unknowns, whereas forces at the nodes are the unknowns in the second approach. Both

displacements and forces serve as independent unknowns in mixed formulations.

In addition to these major divisions, Pian and Tong list four different classes of elements

under the general heading of displacement methods. The first is what they call the compatible

model in which a displacement field which is continuous over the entire system is assumed. For

statics, the principle of minimum potential energy can be used to derive the governing equations

[ 1341, although other techniques such as the unit displacement method [94,95], direct method [97],

and weighted residual methods like Galerkin's method ([931, pp. 81-88) yield equivalent results.

In the equilibrium model, assumed stress fields satisfying equilibrium are used with the

governing equations obtained from applying the principle of minimum complementary energy

[135]. Using a modified complementary energy principle [ 105,136], Pian and Tong have developed

so called hybrid elements in which compatible displacements are assumed at the nodes with stress

fields satisfying equilibrium assumed within each element.

Finally, [1331 makes mention of mixed methods. This approach assumes a continuous

displacement field over the entire system and stress fields within each element. Governing equations

come from a mixed variational theorem attributed to Reissner [1371. Washizu [138 attributes this

principle to Hellinger [ 1391 as well as to Reissner and shows that it is a special case of a principle

which has come to be known as the Hu-Washizu principle [140,141]. The Hu-Washizu principle

is a generalization of the principle of minimum potential energy in which strains and stresses, as

well as displacements, appear.
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It should be possible to develop mixed elements based on this three-field principle. This is

alluded to by Zienkeiwicz and Lefebvre in [142], although their paper considers a mixed element

in which the three fields are lateral displacement, rotation, and shear resultants, rather than stress,

strain, and displacement.

Only compatible elements are examined in the present investigation. Since equilibrium,

hybrid, or mixed formulations are not considered, this study refers to compatible elements simply

as displacement-based elements.

3.1.2. Displacement-Based Elements

Two salient features of displacement-based elements are that all variables of interest, such

as stress and strain, are derived from element displacements and that these displacements are

assumed to vary in some prescribed manner over the element. By expressing these assumed

variations in terms of shape functions, it is possible to describe displacement and all other variables

of interest in terms of the displacements at the nodes of the element. Modeling a continuous system

with such elements reduces the number of degrees of freedom from infinity to the finite number

associated with the unknown nodal displacements in the discretized model.

As stated in Section 3.1. 1, governing equations for displacement-based elements can be found

using a variety of techniques, including the unit displacement method [94,95], direct method [97],

variational principles ([93], pp. 78-88), or weighted residual techniques such as the Galerkin method

([931, pp. 88-91). For statics problems, this reduces a set of partial differential equations or ordinary

differential equations in space to the algebraic matrix problem

Kd =f (3.1)

where
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K = global stiffness matrix for finite element model

d = global nodal displacement vector

f = global nodal force vector

The problem is solved by finding the unknown displacements which remain after forced, or

geometric, boundary conditions are imposed. A technique such as Gaussian elimination is usualij

used to find the unknown displacements ([931, pp. 532-538).

For dynamics problems, the partial differential equations in space and time reduce to a linear

system of ordinary differential equations in time:

Md(t)+Cd(t)+ Kd(t) = f(t) (3.2)

where

M = global mass matrix

C = global damping matrix

d(t) = global nodal acceleration vector

d(t) = global nodal velocity vector

Solving Equation (3.2) for forced vibration problems usually involves the use of some numerical

integration scheme ([931, pp. 476-487).

In the case of undamped free vibrations, assuming harmonic response

d(t) = ae' (3.3)

where

a = mode shape vector
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(0 = natural circular frequency of harmonic motion

yields the algebraic eigenvalue problem

Ka = o2Ma (3.4)

As is true for statics problems, dynamics solutions are obtained after forced boundary conditions

are imposed.

3.1.3. Convergence

In general, solutions obtained using the finite element method are rendered approximate by

several kinds of error. Melosh [ 134] identifies three: manipulation, idealization, and discretization

errors. Manipulation errors stem from the round off, truncation and other errors generated by the

arithmetic operations of the computer used to solve the problem. Idealization errors occur as a

result of inaccuracies associated with the simplifying assumptions required to go from the physical

system to the continuous model (see Figure 3.1). Melosh cites using flat surfaces in place of curved

surfaces or pinned joints instead of fixed ones as examples. Finally, discretization errors are

generated by modeling a continuous system as a collection of discrete elements. This third source

of error is the only kind considered further in the present study.

In general, discretization error will exist unless the assumed variation of displacements over

the volume of the element happens to coincide with the actual variations given by the exact solution

for the continuous system. However, it is reasonable to expect the error normally produced by

discretization to become smaller as the size of the elements in the model decreases, allowing the

piecewise approximation of variables afforded by the discretized finite element model to more
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closely represent the true distributions of the exact solution. In tact, the discretization error

approaches zero monotonically as long as the criteria of completeness and compatibility, or

conlfor ity, are satisfied (see 1 1431, 11441, and pp. 28-36 of' 1-151).

Flements capable of reproducing rigid-body and constant-strain modes of response possess

completeness. As pointed out by Zienkeiwicz (11451, p. 29), rigid-body motion is merely a

constant-strain mnode with zero magnitude. Compatibility, or conformity, requires displacements

to hae the proper degree of continuity within and between elements. Adequate continuity within

elements is established by chooKsing the proper shape finctions. The necessary interelement

continuity is obtained by forcing adjacent elements to share the appropriate nodat degrees of

I reedoilu, which also influences the selection of the proper shape functions for the element.

According to Zienkeiwicz (11451, p. 29), the proper degree of continuity can be ascertained

by observing the derivatives of the displacements present in the strains for the theory being

considered. The degree of continuity need not exceed one less than the maximum derivative of

displacement appearing in the element's strain energy. For example, lBernoulli-l-uler beam elements

must be C' continuous since second derivatives of the lateral displacement lV(x,t) appear in the

strain energy defined In Lquation (2.28); whereas the strains in Fquation (2.33) reveal that

'limoshenko beam elements require only C" continuity. Flements satisfying the minimum

requirements on compatibility are referred to as conforming elements in the present study.

,AIhugh this degree of continuity in con.iunction with completeness is sufficient to guarantee

monotonic convergence to the exact solution, it is not a necessary condition for convergence. Less

restrictive conformity requirements are spelled out by Oliveira 1143,1441, b ,t it is hard to ascertain

if the conditions specified are satisfied by a nonconforming element a priori. In addition,

convergence for noncoiifoning elements is not necessarily monotonic or bounded. That is, the

approximate solution does not necessarily approach the exact solution consistently from abo)ve or
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below (see p. 30 and Figu -e 10.21, p. 205 of [ 1451). Therefore, it is generally desirable for elements

to be conforming as well as complete, since these properties together ensure monotonic convergence

to the exact solution.

Conformity is easy to achieve in line elements such as those for beams; however, it may be

quite difficult to attain in plates. Doing so may require the use of complicated shape functions

([1451, Chapter 10), or the use of the mixed or hybrid formulations discussed briefly in Section

3. 1.1 to reiax the requirements on continuity of displacement mentioned in Chapter 10 of [1451. It

should be noted, however, that the bounded nature of displacement-based elements (too stiff) and

equilibrium elements (too flexible) is lost when mixed or hybrid elements are used[ 1461. Therefore,

it is impossible to tell a priori whether convergence for such elements will be from above or below

the exact solution or if it will even be monotonic to begin with.

An additional means of relaxing continuity requirements in bending elements is to specify

independent displacement fields for rotations and lateral displacement, as is done for Timoshenko

beams. As seen in Equations (2.28) and (2.33), this not only accounts for the effects of shear

deformation in some fashion, but results in strains which are defined by first derivatives of the

displacements, rather than by second derivatives. Therefore, in addition to providing a better

estimate of shear deformation effects, it is generally easier for shear-deformable elements to satisfy

conformity requirements.

It should be noted that C' continuity is still required in Levinson-Bickford elements, since

the second derivative of W with repect to x appears in the strain energy given by Equation (2.38).

In addition to requiring a higher degree of continuity, another disadvantage of such a formulation

is that it forces shear strain to be continuous between elements even when it may actually be

discontinuous. Discontinuities in shear strain arise naturally from abrupt changes in cross-sectional

properties or when beams are used to model frame menioers which meet at an angle ( 11 11, p. 319),

as well as from discontinuities in app!,ed loading.
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3.1.4. Shear Locking

As mentioned by Prathap, et al. in [1071 and [1081, a disadvantage of some shear-deformable

elements is their propensity to exhibit shear locking, an artificial stiffness displayed by some bending

elements in the thin-beam or thin-plate limit. Perhaps the most straightforward way to correct this

problem in beam elements is to choose shape functions for the lateral and longitudinal displacements

such that the contributions of these displacements to shear strain have the same variation over the

length of the element. For example, Equation (2.14) reveals that a cubic variation of lateral

displacement and a quadratic variation of rotation both produce quadratic contributions to the shear

strain of a Timoshenko beam. The present study uses the term "consistent" to classify such a

combination of shape functions. Further, the use of consistent shape functions is the only technique

employed in this investigation to avoid shear locking.

However, it should be noted that the use of consistent shape functions is not favored by some

since this approach requires the presence of nodes in the interior of the elements and does not result

in an equal number of degrees of freedom at all nodes. These features presently make such elements

unattractive for use in commercially available finite element programs. Also, the additional degrees

of freedom required by consistent elements may reduce their computational efficiency somewhat.

Therefore, other methods are often used to suppress shear locking in elements which are formulated

using inconsistent shape functions.

The technique of reduced integration mentioned in [1071 and [108] appears to be the most

popular method. When a variational formulation is used to derive the governing equations for a

finite element, the stiffness and mass matrices can be obtained by integrating various quantities

over the volume ot the element. Gaussian quadrature ([931, pp. 361-365) is often used to facilitate

thig integration process. Exact or approximate values of the integrals involved can be obtained

depending on whether the integrand is sampled at all the required Gauss points (full integration) or
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at some reduced number of points (reduced integration). In addition to saving computation time,

[1071 and [ 108] reveal that reduced integration of the stiffness matrix acts to filter out spurious

constraints caused by using inconsistent shape functions that lead to locking.

Reduced integration can be applied uniformly to all components of the stiffness matrix [ 147]

oi selectively to just the shear-related terms [ 1481. A comparison of uniform and selective reduced

integration is given by Hughes, et al. in [149] and in [150] (pp. 329-332).

The Lagrange multiplier method, also discussed in[ 150] (pp. 194-197,217-226, and 323-335),

is another technique which can be used to avoid shear locking. In bending applications of this

method, the functional associated with potential energy for statics or the action for dynamics is

augmented with a constraint which forces shear strain to go to zero as the thin-beam (or plate) limit

is approached. The multipliers which enforce this constraint exactly correspond physically to shear

forces and become additional unknowns in the finite element formulation of the problem. The

presence of unknown forces as well as displacements requires a mixed formulation for such elements.

Malkus and Hughes [ 151] have demonstrated the essential equivalence between such mixed

formulations and reduced integration, enhancing the legitimacy of the latter technique. In addition,

Hughes actually provides several examples of equivalent mixed and reduced-integration elements

on page 222 of 11501.

Hughes [1501 also discusses penalty functions in his treatment of the Lagrange multiplier

method. These functions only enforce the shear-strain constraint in an approximate fashion, but

do not increase the total number of unknowns since the functions are estimated by the analyst. As

a result, a mixed formulation is not required. However, penalty-function elements may still be

subject to shear locking and may require some form of reduced integration to improve their accuracy

in the thin-beam or plate limit.
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Apparently, shear locking is also possible in some mixed e!ements. One of the most recent

innovations adopted to avoid shear locking in elements based on mixed formulations is the use of

bubble shape functions [142,152,153]. Bubble shape functions can be employed in conjunction

with an initial set of inconsistent shape functions to enforce the constraint of zero shear strain in

the thin-beam or plate limit. Such an approach does not require the use of reduced integration, but

does increase the number of unknowns in the problem since the bubble shape functions require

extra internal nodes. In fact, the final configuration of elements which make use of bubble shape

functions does not appear to be that different from those formulated using consistent shape functions

to begin with.

As stated previously, consistent shape functions are employed in the formulation of all finite

elements considered in the present study. Using such shape functions eliminates shear locking in

a straightforward fashion while retaining the bounded monotonic convergence guaranteed for

conforming, complete elements. This guarantee does not apply to elements which make use of

reduced integration, mixed formulations, or bubble shape functions. In addition to ensuring

bounded, monotonic convergence, utilizing consistent shape functions avoids the mismatch it'

inter-face displacements which can lead to errors in multilayered stacked elements [127-1321.

3.2. Governing Equations

Section 3.1.2 indicates that displacement-based finite elements are based on the following

assumptions: the longitudi" al and lateral displacements of the continuous beam can be approximated

by the displacement field of a properly constructed discretized model, like the one depicted in Figure

3. 1; all other variables, such as velocity, strain, or stress can be expressed in terms of the approximate

displacement field; and prescribed spatial variations of the approximate displacement field and all

related fields can be expressed in terms of a proper set of shape functions. These assumptions make

it possible to recast the governing equations, derived in Chapter 2 using Hamilton's Principle, in
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terms of the unknown nodal displacements of the beam elements derived in this study.

Table 3.1 Vectors and Matrices in Displacement-Based Finite Elements

Vector or Matrix Definition

displacement vector

strain vector

Gstress vector

q local nodal displacement vector for element

d global displacement vector for finite element model

a global mode shape vector

N shape function matrix

B strain-displacement matrix

D constitutive matrix

P density matrix

The vectors and matrices used in the finite element formulation of the governing equations

are defined in Table 3.1. Equations (3.5) express these quantities in terms of the variables discussed

in Chapter 2 and reveals their functional dependence on the independent variables x, y and t.

E = u(x,y,,) = { (x,(X ,yt)l

= cT (Xyt )
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a = a(x,y,t)= {Y (X'y't0 (3.5)- - (x, y, t)l

N = N(x,y)

B = B(x,y)

q = q(t)

The actual relations used to express the variation of the displacement, velocity, strain, and

stress fields over a single element in terms of shape functions are given by Equations (3.6) through

(3.9), respectively.

u = Nq (3.6)

6 = N4 (3.7)

= Bq (3.8)

a = DBq (3.9)

As an be seen in Fluation (3.6), the displacement field is defined as the product of the shape

function nitrix and the nodal displacement vector for the element. Equations (3.5) indicate that

the shape function matrix allows for variations in both the x and y directions. It should be noted

that the va -iation ofdisplacehaents i' the y direction is actually governed by the kinematic constraints

chosen for each beam element and that the x variation prescribed by the shaped functions applies

only to the unknown dependent variables in the kinematic constraint. The effects of both the chosen

kinematic constraint and assumed shape functions are accounted for by the shape function matrix.
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It should also be noted that all time dependence is restricted to the nodal displacement vector.

Therefore, the velocity field is obtained by simply premultiplying the nodal velocity vector by the

shape function matrix, as shown in Equation (3.7).

Equation (3.8) reveals that the strain vector is related to the nodal displacement vector through

the strain-displacement matrix. This matrix is obtained by properly applying the operations specified

in Equations (2.5) to the displacement field defined by Equation (3.6). As depicted in Equation

(3.9), the stress vector is obtained simply by premultiplying the strain vector by the matrix which

characterizes the constitutive relations for the beam of interest.

Using these relations allows the kinetic energy (T,) and potential energy (V,) for an element

to be expressed in the forms

T,= If 4TNTpN4dV (3.10)

= f qTBTDBqdV (3.11)

It should be noted that it is not necessary to use a density matrix to define the kinetic e-nergy for the

element, as is done in Equation (3.10). The energy can be obtained by treating density as a scalar

quantity, which is the standard approach usually taken. However, in some cases it becomes

convenient to incorporate various inertia properties, such as lateral inertia and rotary inertia, in a

density matrix. Since this treatment is more general and since it provides a certain symmetry with

respect to the expression for the potential energy given in Equation (3.11), it is used in this derivation.

Substituting Equations (3.10) and (3.11) into Equation (2.19) yields the action for the element

a, = T lTNT pN4dV- fqTBTDBqdV }dt (3.12)
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The governing equation for the element can be obtained by forcing this action to be stationary. The

result makes use of the fact that the density and constitutive matrices are symmetric:

{ NTpNdV }#+{BTDBdV q = 0 (3.13)

The local mass and stiffness matrices defined by

M(e) f TNpNdV K' )  TBDBdV (3.14)

for the element allows Equation (3.13) to be rewritten as

M e)# +K(e)q = 0 (3.15)

Proper assembly of the local element matrices, namely,

NE NE

M Me) K = K) (3.16)
i=I i=1

where

NE = number of elements in discretized model

allows the governing equations for the free vibration of the entire discretized system to be written

in terms of the global matrices and displacement vector

Md+Kd = 0 (3.17)

Once the global mass and stiffness matrices are assembled, forced boundary conditions

restricting rigid-body motion must be imposed; otherwise, the global matrices will be singular. The

forced boundary conditions seen in Equations (2.31), (2.36), (2.41), and (2.46) are imposed on a
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finite element model by specifying zero motion for appropriate nodal degrees of freedom at the

ends of the model. This has the effect of partitioning the global mass and stiffness matrices (see

[93], pp. 35-37).

For the homogeneous boundary conditions considered in the present study, the portions of

the partitioned matrices required to solve free vibration problems can be obtained simply by

eliminating the rows and columns of the global matrices associated with the nodal degrees of freedom

which are not allowed to move. Similarly, these degrees of freedom must be eliminated from the

global displacement vector as well. Only the retained portions of the partitioned global matrices

and displacement vector are of interest in the following discussion.

It should be noted that, in general, the finite element method cannot satisfy the natural

boundary conditions associated with simply supported or free ends unless the element contains

nodal degrees of freedom which can enforce these boundary conditions explicitly as well (see [ 1131).

Once the global matrices and displacement vector have been modified to account for the

forced boundary conditions associated with the problem of interest, the assumptions regarding

harmonic motion specified by Equation (3.3) can be used to obtain the algebraic eigenvalue problem

given in Equation (3.4). This eigenvalue problem can also be expressed as

1
K- 1Ma = -a (3.18)

M-'Ka = 2a (3.19)

The desired form Jepends on the approach used to solve the eigenvalue problem and the nature of

the global matrices. If the lowest natural frequencies are of interest, which is usually the case, and

if the method used to solve the eigenvalue problem finds the highest eigenvalues first, the form
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given by Equation (3.18) is recommended. If these conditions do not apply and if one of the global

matrices can be diagonalized, the approach which inverts the diagonal matrix should be used to

take advantage of the computational efficiency possible in inverting such a matrix.

3.3. Mass and Stiffness Matrices

The fundamental task associated with developing a new finite element for dynamic analyses

is deriving its mass and stiffness matrices. As can be seen in Equations (3.14), this task cannot be

accomplished until the element's shape functions and the basic nature of the beam's material

properties are defined. Once the shape functions and basic material behavior are defined, the fairly

general treatment of the governing equations discussed in Section 3.2 can be applied easily to the

beam finite elements of interest in the investigation. The definitions given in Equations (3.20)

through (3.23) can be used to facilitate this process.

N N2 (3.20)

B = B2 - N 2 + N (3.21)

Lx at

D = [E( G(y)] (3.22)

= [P (y) = p(y)I (3.23)

where

I = the identity matrix
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Equation (3.20) partitions the shape function matrix into two submatrices which allow the

shape functions for longitudinal and lateral motion to be specified independently. This partitioning

also makes it easier to define the strain-displacement matrix, as shown in Equation (3.21). Finally,

the constitutive and inertial properties for the simple beam elements can be stated more explicitly

by the general relations given in Equations (3.22) and (3.23). These two equations reflect the

nonhomogeneous nature of laminated composites in which the material properties vary

discontinuously in the lateral direction.

Substituting the definitions given in Equations (3.20) through (3.23) into Equations (3.14)

allows the local mass and stiffness matrices to be expressed as

M(e) =M(e) + M(e) Tvf
M e) l= = jNlp(y)NdV+f N2p(y)N 2dV (3.24)

= K~e+ K f (y)B d V+ f BT G (y)B d V (3.25)

These equations reveal explicitly the contributions that longitudinal and lateral motion make to the

local mass matrix, as well as the contributions of normal and shear deformation to the stiffness of

the element. It should be noted that M( ) characterizes the rotational inertia of the beam as well as

the translational inertia associated with its axial motion. In addition, the stiffness matrix associated

with normal deformation accounts for both axial and bending response.

The shape functions for all elements examined in this investigation allow a quadratic variation

of longitudinal displacement in the x direction along with a cubic variation of lateral displacement

in the x direction. As stated previously, such a consistent combination of prescribed displacements

avoids shear locking and leads to more compatible variations of interlayer displacements for stacked

elements.

Vari,,tions for generic longitudinal and lateral displacements are defined as follows:
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IVu(x,t) = ao(t)+a,(t)x +az(t)X2

= A,(x)q,(t)+A 2(x)q 2(t)+A 3(x)q 3(t) (3.26)

where

a,(t) = unknown coefficients in quadratic polynomial

q,(t) = degree of freedom associated with ith node of element

A,() = quadratic shape function associated with ith nodal degree of freedom, q,(t)

and

xtw(x, t) = bo(t) i- bl(t)x + b2 (t)x2 + b3(t)x 3

= B,(x)q(t)+B 2(x)q2(t)+B 3(x)q3(t)+B 4(x)q4 (t) (3.27)

where

b1(t) = unknown coefficients in cubic polynomial

B,(x) = cubic shape function associated with i-th nodal degree of freedom, q,(t)

Both equations show the equivalence between expressing these variations in polynomial form and

in terms of shape functions.

In general, axial motion, rotation, and second- and third-order warping of the cross section

can contribute to long~tudinal motion. As seen in Equation (3.26), three degrees of freedom are

needed to specify a quadratic variation for any of these generalized longitudinal displacements. For

all elements in this study, these three degrees of freedom correspond to generalized displacements

at the end nodes and center node pictured in Figure 3.2a. Figure 3.2b shows the positive direction

for axial motion, rotation, and warping deformations at a typical node.
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32 U
1/2 11t2 - (

(a) Nodes.
(b) Positive directions for longintudinal

degrees of freedom at typical node.

/ = iength of element

U i = axial degree of freedom (dof) at node I

D(1) = rotational dof at node i
I

D.(2) = second-order warping dof at node 1

D.(3) = third-order warping dof at node i

Fig. 3.2 Quadratic finite element.

1 2 3 4

1/- 1,1 3  v3--

(a) C element.

w ,  
W3

w w

W2 =slope at nodc 1 W4 = slope at nodc 2

(b) C1elemenz.

Fig. 3.3 Cubic finite element.

Equation (3.27) indicates four degrees of freedom are require to specify the cubic variation

in lateral motion. The nodal degrees of freedom for COand C' continuity are shown in Figures 3.3a
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and 3.3b, respectively. The nodes for CO continuity are evenly spaced along the length of the element.

The C-continuous element requires only two end nodes, but has two degrees of freedom at each

node. Figure 3.3a and b also show the positive sense for all variables associated with each kind of

cubic variation.

The shape functions for longitudinal, C°-continuous lateral, and C'-continuous lateral

displacement are given in Equations (3.28), (3.29), and (3.30), respectively, as follows:

1

1Ax -~3 x +2 x

X X 2

A,(x) 4r -4 jj (3.28)

B ()= ()+2(- +

where

I leni-th of the element

B (x) I8 X) ( 1

Bx (I - 18(x-)-45(x) -)7(-i (3.29)
2L xK XK)2 '

B4+36 27
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B,(x) -1 j 3-2

B,(v)= +f()jj] (3.30)

B(x) = I

The quadratic nature of the longitudinal shape functions and the cubic nature of tlie longitudinal

shape functions are apparent in these equations.

7q q

q q737

Fig. 3.4 Bernoulli-Euler beam element.

Figure 3.4 shows the nodal degrees of freedom associated with a Bernoulli-Euler beam

element. The displacement vector containing the degrees of freedom seen in Figure 3.4 is given

by

q U1 IV, W2 U2 U3 V 3 V4  (3.31)

The kinematic constraint for a Bernoulli-Euler beam, given initially in Equation (2.11), can be stated

in terms of the nodal degrees of freedom and shape functions for this element as follows:
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u(x,,t) U(x,t)-VW'(x,t)y

3 4

= I1 Ai(x)U,(t) - X B' (x)IV(t)y

=NI(v,y)q(t) (3.32)

where

U,(t) = nodal degrees of freedom for axial displacement

IV1(t) = nodal degrees of freedom for lateral displacement

and

4

v(xy,t) = l(x,t) Y B(x)1Vj(t) = N,(x,v)q(t) (3.33)
.1=l

The resulting shape function submatrices for longitudinal and lateral displacement are given as

N1 = [A1(x) B1'(x)y B2'(x)y A 2(x) A 3(x) B 3"(x)y B4'(x)y] (3.34)

N, = [0 BI(x) B,(x) 0 0 B 3(x) 31(x)] (3.35)

As can be seen, these submatrices capture the spatial variations imposed by the kinematic constraint

and prescribed by the shape functions.

The submatrices for the B matrix, obtained by applying the operations specified in Equation

(3.21) tc :.. Ip function submatrices given by Equations (3.34) and (3.35), are

B1  = 1A,'(x) B,"(x)v B,"(x)y A2'(x) A3'(x) B3"(x)y8 (3.36)

B, = 0 (3.37)
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The zero submatrix seen in Equation (3.37) reflects the inability of the Bernoulli-Euler beam to

model shear strain directly.

Substituting the shape functions given in Equations (3.28) and (3.30) into Equations (3.34)

through (3.37), substituting these in turn into Equations (3.24) and (3.25), and carrying out the

required integration over the volume of the element results in the local mass and stiffness matrices

given in Equations (3.38) and (3.39), respectively:
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Several features of these matrices should be noted. First, only components in the upper

triangle of each matrix are specified since both matrices are symmetric. Second, the nonhomogeneity

possible in composite beams requires the use of the composite properties defined in Equations (2.25)

and (2.26). Finally, the odd-numbered composite terms (e.g., P,) are necessary to account for the

coupling between the axial and bending responses exhibited by nonsymmetric composite beams.

These components have a value of zero for symmetric beams.

The mass and stiffness matrices for all the remaining elements can be found in a similar

manner. The results for the Bemoulli-Euler beam element just discussed as well as for the remaining

elements are summarized in Section 3.3.2. It should be noted that the Bemoulli-Euler beam element

and the Levinson-Bickford element require C' continuity in lateral displacement. Therefore, these

elements use the nodal degrees of freedom pictured in Figure 3.3b and shape functions specified

in Equations (3.30) to interpolate lateral displacement. The other elements use the nodal degrees

of freedom shown in Figure 3.3a and the shape functions given in Equations (3.29).

It should also be noted that C' continuity is easy to attain in the Levinson-Bickford beam

element, but more difficult in the associated plate element developed by Reddy and Khdier [62],

which requires Hermite cubic shape functions to interpolate lateral displacement. In addition, the

C' contint,;ty required by the Levinson-Bickford beam element does not allow shear strain to be

discontinuous between elements. As discussed in Section 3.1.3, this can be a drawback in cases

where the shear strain actually is discontinuous.

3.4. Mass and Stiffness Matrices for Each Simple Element

This section specifies the nodal degrees of freedom, the kinematic constraints in terms of

these degrees of freedom, and the resulting local mass and stiffness matrices for each simple element

developed in this investigation. The general approach outlined in Section 3.3 is used and results
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are presented for elements associated with Bemoulli-Euler, Timoshenko, Levinson-Bickford, and

the general third-order beam thories, in that order. The figures and equations used in Section 3.3

for the Bemoulli-Euler beam element are repeated here for completeness.

3.4.1. Bernoulli-Euler Beam Element

The nodal degrees of freedom for the Bemoulli-Euler element are given in Figure 3.5 and

Equation (3.40). The kinematic constraints for the element are specified in Equations (3.41) and

(3.42). The resulting mass and stiffness matrices are given in Equations (3.43) and (3.44),

respectively.

q 4 q 

q3 q 7

Fig. 3.5 Bernoulli-Euler beam element.

qT = [U1 WI IV'2 U2 U3 143 W41 (3.40)

u(x,y,t) = U(x,t)-W'(x,t)y

3 4

= .A,(x)U,(t)- X B' (x)'V(t)y (3.41)

= N1(x,y)q(t)

4

v(xy,t) = W(x,t) = Y Bj(x)Wj(t) = N2(x,y)q() (3.42)
J=I
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3.4.2. Timoshenko Beam Element

The nodal degrees of freedom for the Timoshenko element are given in Figure 3.6 and Equation

(3.45). The kinematic constraints for the element are specified in Equations (3.46) and (3.47). The

resulting mass and stiffnr:ss matrices are given in Equations (3.48) and (3.49), respectively.

Iq 7q q 49__qq

qq
2 q3 6- q q~ 10

Fig. 3.6 Timoshenko beam element.

q = [U1 WI (P W2 U2 (D2 W3 U3 W4 'D31 (3.45)

u (x, y, t) -U U(x, t) - D(-x,t)y

3 3

SAj,(x)U,(t) - X A (x)D,(t) (3.46)
i=1 i=1

SN,(x,y)q(t)

where

D, (t) = nodal degrees of freedom for rotation of cross section

4

v(x,y,t) = W(x,t) = I B (x)W (t) = N 2(x,y)q(t) (3.47)
j=1
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3.4.3. Levinson-Bickford Beam Element

The nodal degrees of freedom for the Levinson-qickford element are given in Figure 3.7 and

Equation (3.50). The kinematic constraints for the element are specified in Equations (3.51) and

(3.52). The resulting mass and stiffness matrices are given in Equations (3.53) and (3.54),

respectively.

q 
(17

---- q q5 ---- 0

q3q4 6 9 i0

Fig. 3.7 Levinson-Bickford beam element.

q = [U1 W, P1 lt,2 U2 (2 U3 VV4 (3 V3] (3.50)

u(x,y,t) = U(xt)-4(XtOy- 3C2

= U(x,t) (1 ) ) Y...' (xt)Y (3.51)

3 3 2 3 C2

A X a(x)U,(t)- A, (x)c)i Wi = =3c' 3-c': I

NI(x,y)q(t)

4

v(x,y,t) VW(x,t) = Y B1(x)V(t) = N2 (x,y)q(t) (3.52)
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3.4.4. Third-Order Beam Element

The nodal degrees of freedom for the third-order element are given in Figure 3.8 and Equation

(3.55). The kinematic constraints for the element are specified in Equations (3.56) and (3.57). The

resulting mass and stiffness matrices are given in Equations (3.58) and (3.59), respectively.

q ,q6q ,---q7 qll ql3 -- q 1 2

q3 q4'q 5 q8 q9'q 10q4'q15'q 6

Fig. 3.8 General third-order beam element.

[T (D(I (D() (3) 2 T~ (() (D(2) 4D(3)q =[ul w, I I w I 2U2 2 -2 2
3 g 3 (3.55)

u(x,y,t) = Ut)y -_(1)(Xt)y -q °)(xt)y 3

3 3 3

= X A,(x)U,(t)- X A,(x)cID')(t)y - X Ai(x)c( (t)Y 2  (3.56)
1=1 i=1 i=1

3

Y. Ai(x)(D(3)(t)y 3 = NI(x,y)q(t)

where

cFo)(t) = nodal degrees of freedom for rotation of the cross section

C(
2z)(t) = nodal degrees of freedom for second-order warping of the cross section

',3)(t) = nodal degrees of freedom for third-order warping of the cross section

4

v(x, y,t) = W(x,t) = X B1(x)Wj(t) = N2(x,y)q(t) (3.57)
)--I



90

00

" €lI I I I

I I I"I
;-z€

C40
£0 \0

0 ON0 0 0 m)0 0 0 G%0 0 0

o 0 0••

C' C' ... . . . . . . . . .

I

0 0

£0 0 0

?.,q . . . 0. . 0. . . . . *

qtrr

too

000

0 i



91

-~ 00
0C + \C~

00 00+ 00

00

000

00 00 00

ON -n 00 ON\C cs

I IT

CNN

I+ + +

rr-

00

ev



92

-4 -4

0 00 +
I I C' ~ 00

00

00 -

- 00

- I 00

6 00

-. 4 0- -
-~ rq I . - 0

00 C0 4

0 60 00

-4 -. 0I 0

M N e

60 600
000+

N0 0- 0



93

00 -=

+ + 00 r ~.a
6 8 ON + +
00 00 6 6

+ +
N NN

00 00 - -

+ 00~N

6 6 ?~ I -Co.

C4



94

3.5. Mass and Stiffness Matrices for Stacked Elements

The procedure for finding the mass and stiffness matrices for stacked elements is outlined by

Miller in [ 1291 and L136i and discussed in detail by Yuan and Miller in [1271 and [1281. Basically,

a stacked element is made by simply placing a series of individual elements on top of each other.

The matrices for this vertical array of elements are obtained by performing a sequence of

transformations that relate the nodal degrees of freedom in each layer to the master degrees of

freedom chosen for the stacked element. In this process, some degrees of freedom in individual

layers are considered to be slave variables of the master variables associated with the stacked

element. The transformations eliminate the slave variables, resulting in a more efficient element

still capable of modeling the deformation of individual layers explicitly.

3.5. 1. General Matrix Transformations for any Finite Element

Before discussing this process in detail for the two stacked elements developed in this study,

some general comments regarding matrix transformations are in order. Figure 3.9 pictures two

essentially identical finite elements each possessing a different set of equivalent degrees of freedom

or generalized coordinates. The difference in generalized coordinates could be due to eliminating

slave variables in one element, rearranging the order or location of an element's degrees of freedom,

or some other change. Whatever the difference in the degrees of freedom for each element, it is

assumed that they can be related by a transformation as shown in Equation (3.60).
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q = nodal displacement vector

f = nodal force vector

A = mass or stiffness matrix

(a) Original element.

P = nodal displacement vector

g = nodal force vector

A = mass or stiffness matrix

(b) Transformed element.

Fig. 3.9 Element transformation.

q = Tp (3.60)

where

q = nodal displacement vector for original finite element

p = nodal displacement vector for transformed finite element

T = generic transformation matrix

Since both systems are equivalent, the external work done by nodal forces acting through the

associated nodal displacements should be equal for each system. This is stated mathematically as

fq-grp = 0 (3.61)

where

f = nodal force vector for original finite element



96

g = nodal force vector for transformed finite element

Substituting Equation (3.60) into this equation yields the result

fTp-gTp = (T _gT-]p = 0 (3.62)

Hence

g = Tf (3.63)

A final relationship of interest is that between the nodal forces and the nodal displacements,

namely,

a) f = Aq b) g = A*p (3.64)

For static nodal forces, the A and A* matrices correspond to stiffness matrices; in the case of nodal

inertial forces which can be derived from acceleration via D'Alembert's principle ([19], p. 235), A

and A* represent mass matrices.

Substituting Equation (3.60) into Equation (3.64a) and substituting this in turn into Equation

(3.63) yields the result

g = Trf = TTAq = TTATp (3.65)

Comparing this result with Equation (3.64b) yields the matrix transformation

A* = TTAT (3.66)

This equation shows how a matrix for the transformed system can be derived from the equivalent

matrix associated with the original system. This transformation is applicable to either mass or

stiffness matrices.
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3.5.2. General Matrix Transformations for Stacked Elements

The transformation for a stacked element starts by considering a two-lamina configuration,

such as the stacked Timoshenko beam depicted in Figure 3.10. As seen in this figure, the original

system comprises two elements simply stacked on top of each other and includes all the degrees of

freedom associated with the two elements. The transformed system represents a stacked element

in which redundant degrees of freedom in the original two-lamina configuration have been

eliminated by enforcing the continuity of longitudinal and vertical displacements at the interface

between the two layers.

q (2 ) q q(2) jq (
2 ) q ()

2q(2) q2 2

(( 2 ) q( 2 ) q(

L 3 _pl P56 P910 l2

q~ A() qta1e emnt2 44
C q(11 l) 1 q ()

3~i 6 10

(a) Original simple elements.

41"IIi3 P1  P 5
I.. _ __ _ _ _ __ _ _ _ __ _ _ _ P I -- P;

(b) Stacked element.

Fig. 3.10 Two-lamina stacked Timoshenko beam element.

In general, the original configuration can be made up of elements based on either Timoshenko

beam or the general third-order beam theory. Le inson-Bickford beam elements are not amenable

to this treatment since the assumption of zero shear strain on the lateral surfaces of the beam inherent

in the associated theory precludes stacking such elements vertically.
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layer (2)

V V V Vea ~ bd e

a Ua b c uc d e e

interfacex
layer (1)

(c) Displacements at interface.

Fig. 3.10 Concluded.

The equations defining continuity of displacement for the points on the interface pictured in

FigLre 3.10c are

, ) (2) () = (2) (1) = (2)
a /c /c /e /e

)= V k J b = Vb V = Vd = v( (3.67)

where

I() = longitudinal displacement of layer i at pointj
'j

V(,) = lateral displacement of layer i at pointj
I

As seen in these equations, compatibility of longitudinal displacement provides three equations,

which are used to eliminate the three degrees of freedom associated with pure axial motion of the

top layer. Similarly, the continuity of vertical displacement allows the four degrees of freedom for

lateral displacement of the top layer to be eliminated as well.

The transformation from the original set of generalized coordinates associated with the two

individual elements in the stack to the master variables retained in the final stacked element is



99

achieved one layer at a time. General expressions for these layerwise transformations are shown

in Equations (3.68) and (3.69) and, in accordance with Equation (3.66), lead to the general matrix

transformations shown in Equations (3.70).

qO) = R1)p

q(T ( 2) (3.68)

where

q':) = nodal displacements in layer i of original element

p = nodal displacement vector for stacked element

R' = transformation matrix for lower layer in a two-layer stacked element

T,' = transformation matrix for upper layer in a two-layer stacked element

g(1) = R(1)'fi)

g(2 ) = (2)re2) (3.69)

where

r1 = nodal fcrces in layer i associated with nodal displacements q(i)

g = nodal forces for stacked element

g(L) = portion of g associated with layer i

A O )  R ()TA(l)R(l)

A*
-

2)  T(2)TA(2>-(2) (3.70)

where

A(') = mass or stiffness matrix for layer i

A* = mass or stiffness matrix for stacked element



100

A *(') =portion of A* associated with layer i

The equivalent matrix for the stacked element is given by the summation of the transformed matrices

for the top and bottom layers:

A* = A*)+A *(2)  (3.71)

For a three-lamina element, the procedure just described is used to combine the top two

laminae into a single layer. The result of this operation is then treated as a single layer which is

combined with the remaining lower layer by repeating the same basic transformation procedure

one more time. The resulting matrix transformation is described mathematically as

A* = T(2)T(T(3)TA(3)t(3) + (2)TA(2R(2))T(2) + R(l)TA(l)R(l) (3.72)

where

A*(') = mass or stiffness matrix for layer i

A* = mass or stiffness matrix for stacked element

R(J) = transformation matrices for the two-layer stack containing layerj as the bottom layer

T) = transformation matrices for the two-layer stack containing layerj as the upper layer

The generalized process for an N-lamina beam is given as

A* = T(2)(T)( ..T (Rr +RN - TAR1R - t... T(3) +

R(2) A (2)R (2))T (2)+ R')rA" )R°() (3.73)
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As can be seen in this equation, the procedure just described for a three-lamina beam is continued

in a cascading fashion until all the layers are combined in a single stacked element with the bottom

layer acting as the key layer. This layer has the distinction of being the one in which the degrees

of freedom associated with lateral and pure axial displacements have not been eliminated.

Obviously, defining the R and T matrices properly is essential in the transformation procedure.

Obtaining the R matrix for the two-lamina configuration pictured in Figure 3.10 is very

straightforward since the degrees of freedom for the bottom layer represent a subset of the master

variables of the stacked element. Therefore, this matrix must contain the proper combination of

zeros and ones required to filter out the master degrees of freedom not present in the bottom layer.

The components of the T matrix for the configuration seen in Figure 3.10 are also obtained

in a straightforward fashion; however, finding some of these components involves a little more

algebra. In addition to the zeros and ones needed to filter out the appropriate master variables of

the stacked element, the T matrix contains the components necessary to eliminate the slave variables

in the upper layer by enforcing the compatibility conditions given by Equations (3.67).

These general remarks regarding the R and T matrices apply to all steps in the cascading

procedure defined by Equation (3.73) and are valid for stacked elements based on both Timoshenko

beam and the general third-order beam theory. Specific matrices for each kind of element and for

each step encountered in the cascading transformation procedure are provided in Section 3.4.3.

3.5.3. Transformation Matrices for Stacked Timoshenko Beam and Third-Order Beam Elements

Figure 3. 1Ob shows a two-lamina stacked element made up of Timoshenko beam elements.

The 10 x 13 R(" matrix for this element is given as
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q()

1 0 0 0 0 0 0 0 0 0 0 0 0 P1

q()

0 1 0 0 0 0 0 0 0 0 0 00 P2
(1)q30 0 1 0 0 0 0 0 0 0 0 0 0

(1)
q4 0 0 0 0 1 0 0 0 0 0 0 0 0

q5  0 0 0 0 0 1 0 0 0 0 0 0 0
(3.74)

q(1) 0 0 0 0 0 0 1 0 0 0 0 0 0
q6

(1) 0 0 0 0 0 0 0 0 1 0 0 00

q7l

() 0 0 0 0 0 0 0 0 0 1 0 0 0

()0 0 0 0 0 0 0 0 0 0 01 0 .013q9

As can be seen, the matrix acts to filter out the master variables not present in the lower lamina of

the element.

In addition to filtering out similar variables not present in the upper lamina, the 10 x 13 T12)

matrix enforces the compatibility conditions given in Equations (3.67). These conditions are

enforced by expressing the generalized coordinates associated with lateral displacement and pure

axial motion of the upper layer in terms of the master variables retained in the stacked element.

The relations required for this operation are derived from Equations (3.67). The appropriate

formulae for the stacked Timoshenko beam element depicted in Figure 3.10 are given by
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,2 ( ) ( (2)1
q,2 q , - q3)2 +q3 2

(2) (1) ( 1) (2)q5  q5 - q6 " +q 6 2 (3.75)

((F ) (2)1
q82) q8 -q02 _q

where

) = j-th degree of freedom in layer i

t (l)  = thickness of layer i

These relations are incorporated into the T (
2
) matrix, which becomes
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•(2)' -1) -t (2)

q, 1 0 0 0 0 00 0 000 0 02 2
P,

q(2)2 0 1 0 0 0 0 0 0 0 0 0 0
P2

q2) 0 0 0 0 0 0 0 000 0 0

q(2) 0 00 0 1 0 0 0 0 0 0 0 0

(2) (1) t(2)
q 0 0 0 0 1 -0 0 0 0 02 2

(2)6 0 0 0 0 0 0 1 0 0 0 0 0

(2)q7 0 0 0 0 0 0 0 1 0 0 0 0

q (2 ) _t 1 ) _t(2 )

8 0 0 0 0 0 0 0 0 1 0 -
2 2

(2)q9
0 0 0 0000 0 0 0 0

P13,
q(2)

0. 000 0 0 00 0 00 00 1

(3.76)

Figure 3.11 shows a stacked element containing N laminae, each of which is allowed to act

like a Timoshenko beam. The formulae for the general R and T matrices required for such a stacked

Timoshenko element are given in Equations (3.77) and (3.78), respectively.
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(~+2 (N)0

P2N+4 
+7

(N-1 6

3N 
PN5I

P2N+3 
PN+6

(2)

RN = nube of foria inelemen

RP} +N-4 = 1 for 1=4,5,6 (3.77)

RCZ) = 1 for 2=7,8,9,10
j)j+2(N-z)

i = li,N - 1
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All Tj(' = 0 except

T() I = 1,2

T ( ) + = 1 j = 3,5+(N-i)

T ( )  = 1 = 6+(N-i),9+2(N-i)

T ( )  = 1 = lO+2(N-i),lO+3(N-i)

T _ for j=l,k=3 (3.78),.k 2

j =5 + (N -i),k = 7 + (N -i)

j =8+2(N-i),k = 12+2(N-i)

TL) _ - for j= ,k=4

,illk 2

j = 5+(N-i),k = 8+(N-i)

j =8+2(N-i),k = 13+2(N-i)

i =2,N

The typical R(') matrix for the i-th layer of this element has dimensions of 10 x [ 10 + 3(N - i)]; the

dimensions for the typical T ) matrix are [10+3(N -i)] x [13 +3(N -i)].

A stacked element composed of two third-order beam elements is pictured in Figures 3.12a

and 3.12b. The 16 x 25 R(1) matrix for this element is given by Equations (3.79).
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(2)) q (2 Iq'' qq(2)

(2 1 1 1 2)

4 8 s- 10

I)q( l)q(2)q(l) q1

q(l),q(l),q(I) 1) 8 9 10 , 1~

(a) Original simple elements.

P6 'P7 8P-D 14 'P15 'P16 P23 'P4, 2

f p 7 p 10 p18

P 3 'P4  P 5 P I 1 12 'P13 p20 11P2

(b) Stacked element.

Fig. 3.12 Third-order beam element.

(N) P9N+5 '9N.6 '9N+7

0 P N'P N+I P 3N 2 O6N+2 'P6N+3 '6N +s4

(2) P6N+11 p6N+12 p6N+13

P 6 '7 1P 8 P3N+8 'P' 3N+9 'P3N+10

2 p 1 ) 1 3N+3 P3N+4 P 6N+5 P6N+7 ~ 6+6

3 4 5 3N53N+6 '3N+7

P6N+8 '6N+9' 6N+10

(c) Multilayered stacked element.

Fig. 3.12 Concluded.
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All R°' ) = 0 except

R -] = 1 for j=1,5 (3.79)

R(') = I for j=6,10

j'j6( = 1 for j=11,16

Equations (3.80) provide the compatibility conditions which can be derived from Equations (3.67)

for the configuration shown in Figures 3.12a and b.

(2) = q() ( (1 ) _ ((t1/2) _q (t )/2)3

(2 )2 + q 2)(t()/2) 2  ( q2)(t()/2) 3

q7 )= q - 9 t-/2q qt)/ )(t(o/2).,, 3 . z (3.80)

-q3 + qt(t/2)/2) - q51 (t /2)
(2) = ( - 1 (1i q)(t 2 ')t-2)()) (2) ( 2 (2) (1)

, qg = )/2- q 9 (t /- -ql (t  /2)q1)t1/)

-q(2).()/2,+ q(2(t(2r/2)2 - q() (t')/2)3
E s 1 5 a 14t wi erces these cti

Elements of the 16 x 25 T (2) matrix which enforces these conditions are given as follows:
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All = 0 except

T12)= 1 for j=1,2J~1

T j(2)

jj +3 = 1 for j=3,7

J)+6 = 1 for j=8,13

Tjj9 = 1 for j=14,16

Tk)(2 -(t ( I)/ 2)M  (3.81)

for j=l,k=l,m=1,3

for j=7,k=3,m=1,3

for j=12,k=7,rm=1,3

T(2) = (_t (2)/)
T,) +k+ m = /2)m

for j=1,k=4,m=1,3

for j=7,k=6,m=1,3

for j=12,k=1O,m=l,3

Formulae for the general R and T matrices associated with the N-lamina configuration pictured in

Figure 3.12c are given as follows:

All R = 0 except-j,k

R I= 1 for j=1,5
Id'

() - 1 for j=6,10 (3.82)

Rij.+ 6(N-o i)= 1 for j=11,16

i= I,N-1
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All T() = 0 except

T) = 1 j=1,2

1.1

T( ) = 1 j=3,7+3(N-i)

T() = 1 j=8+3(N-i),13+6(N-i)

T() = 1 j= I4+6(N-i),16+9(N-i)

T(')  -(t('-')/2) 'm j= 1,k =2+m (3.83)

j=7+3(N-i),k = 10+m+3(N-i)

j = 12+6(N-i),k = 19+m +6(N-i)

rTI(I = (-t"i)/2)n j =l,k= 5 +m

j=7+3(N-i),k= 13+m+3(N-i)

j= 12+6(N-i),k =22+m +6(N-i)

m=1,3; i=2,N

Typical matrices for the i-th layer of the third-order stacked element have dimensions of 16 x

[16+9(N - i)] for R(') and [ 16 + 9(N - i)] x [25+9(N - i)] for TV ).

Once the formulae for computing the mass and stiffness matrices of individual layers as well

as the general R and T matrices are automated for use on the computer, they can be used to assemble

the overall mass and stiffness matrices for a stacked element using the cascading procedure specified

by Equation (3.73).

The mass and stiffness matrices for individual layers in stacked Timoshenko beam elements

are derived from Equations (3.48) and (3.49), respectively. Equations (3.58) and (3.59) provide

the bases for the matrices associated with individual layers in stacked third-order beam elements.

H-owever, since each layer in a stacked element is homogeneous, the composite properties defined

by Equations (2.25) or (2.26) reduce to those given by Equations (3.84).
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P. = PI,

Q,, = E1,, (3.84)

V,. = GI,

where

2C +1 n even
= ydA n + 1

A 0 n odd

In addition, a value of k= 1 is assumed for each layer in a stacked Timoshenko beam element since

the actual variation of shear strain over each layer is not known a priori.

3.5.4. Arbitrary Key Layer

Finally, it should be pointed out that this treatment assumes the bottom layer is the key layer,

which may influence the effects the forced boundary conditions have on the response calculated

by stacked elements. For most end conditions, the location of the key layer has no effect. However,

in the case of beams with a pinned end, that is an end which is unable to move in either the x or y

direction but is free to rotate, the location of the key layer influences the basic nature of the beam's

response.

If the bottom layer is retained as the key layer, the finite element model of the beam assumes

that the pin enforcing this end condition is physically located in the bottom lamina. This

nonsymmetric boundary condition leads to coupling between axial and bending response, even in

beams with symmetric lamination configurations.

Although being able to model a pinned boundary condition in any layer may not be essential

to analyzing actual physical systems given the highly idealized nature of this boundary condition,
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many exact analytical solutions [12-18] are based on simple supports which possess geometric

symmetry relative to the midplane of a beam or plate. Therefore, an evaluation of the performance

of stacked elements made using such analytical solutions requires the ability to move the key layer

to avoid or minimnize the coupling induced by a nonsymmetric pinned boundary condition.

q 2N+3 
3N+6

q ( ) 4q;N+6 N+9

q N+4

2N+8

(a) Original element with key layer at the bottom.

Fig. 3.13 Stacked element with arbitrary key layer.

Moving the key layer to any specified lamina within the stacked element can be done simply

by treating the problem as a transformation from a finite element with an initial set of generalized

coordinates to one with a new set of generalized coordinates. As seen in the stacked Timoshenko

beam pictured in Figure 3.13, this transformation moves the degrees of freedom associated with

pure axial displacement and lateral displacement from the bottom layer to the newly specified key

layer.

Actually, no transformation is necessary to move the degrees of freedom for the lateral

displacement. Since all elements considered in this study ignore transverse normal strain, the actual
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(N)

22N+4 P3N+7

P2 (NK) P +32N+5 P 2N+7 22N+6

KPN+NK+4

SKN+5 P2N+8

NK = layer number of key layer

(b) Transformed element with arbitrary key layer.

Fig. 3.13 Concluded.

location of these degrees of freedom has no effect on the mass and stiffness matrices. Therefore,

they can be considered to reside in any lamina desired as long as the order in which they appear in

the element's nodal displacement vector does not change.

The degrees of freedom for pure axial motion for the original stacked Timoshenko beam

shown in Figure 3.13a can be "moved" by expressing them in terms of the degrees of freedom

associated with the modified stacked element shown in Figure 3.13b. The equations required for

this process are based on continuity of displacement between adjacent layers and the kinematic

constraints for each layer between the bottom lamina and the new key layer.
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P4T P 5  T
O t(2) O P t(3)

a a' b b'

- '-- a- --- T-------- T* - q - 3 t U (2) - 4 t(2)

a Ia'

a, b, and n are points on a- q 3

interface in line with )

node 1 before deformation
(j)

u = axial motion at node 1
a', b', and n' are locations of 1 ly er

these points after deformation

(a) Key layer = lamina (2). (b) Key layer = lamina (3).

Fig. 3.14 Geometry associated with moving the key layer.

P NK T
0 Pi , (NK)

n n.. . -' _-
'~U n--

b b'
'- --Ub Z  -  -p4

u (2) _ 4 T
0- U(2

a a'
-0---------- - -- -- -- -- -------

(c) Arbitrary key layer.

Fig. 3.14 Concluded.

Figure 3.14a shows the geometry at node I associated with moving the key layer up one

lamina. The analytical expressions related to this geometry for all node points become
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q,= + p1 +P 3t ( /2 + p 4t (2/ 2

qN+ 4 = PN+4 +PN+,t(1 /2 + PN 16t /2 (3.85)

q -v+6 = P2N+6+P2N+8t(1/2 + PzN +9t (2 /2

These equations are similar to Equations (3.75), which are associated with the stacked Timoshenko

beam's T matrix.

A two-layer move of the key layer is portrayed in Figure 3.14b and the following relations:

q, = p + p 3t" )1 2 + +t (2, + p 5t(3 /2

qN+ 4 = PN+4 + PN+5t )/2+PN+6t (2) +PN+7t 3)/2  (3.86)

qzv+ 6 = P ++P2 +8t()/2+P. +9tI)+p. + t(3)/2

Essentially, these equations are obtained by using the continuity of displacement at the interface

between lamina 2 and lamina 3 (point b for node 1) to relate the axial displacement in the second

lamina (U 2  for node 1) top,, and using Equations (3.85) to relate this displacement to q,.

The generalized problem is depicted geometrically in Figure 3.14c and analytically as follows:

q, -- p, + Y_ P+z- + p  -NK- ( Pi+2ti 
+ t +

NK-I( t(i) i N+5t(i+ ))qN +4 =PN+ 4 + XrP.N,4 -+.+ p (3.87)
2 2)

q2+ = P2N+6+ Pi+2N+7-+Pi+2N+8-i~l2 2

where

NK = layer number of key layer
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These equations generalize the results given in Equations (3.85) and (3.86) and Figures 3.14a and

b.

The transformation matrix involved in moving the key layer up to any specified lamina acts

to retain all degrees of freedom not affected by this change, including those associated with lateral

displacement. In addition, this matrix enforces the generalized relations given by Equations (3.87).

The elements of the resulting matrix for a stacked Timoshenko beam element are given as

All Ljk = 0 except

L:, = 1 for ]=1,2...3N+7

Li.k = t 1)/2 for j=l,k=3

j =N+4,k =N+5

j = 2N +6, k = 2N +8

Lik t (INK)/2  j = 1,k =2+NK (3.88)

j =N +4,k =N+4+NK

j =2N+6,k =2N+7+NK

Lik t"' for j=l,k=2+i

j =N+4,k =N+4+i

j = 2N +6,k = 2N +7+i

i=2,3.... NK-1

where

L = transformation matrix associated with moving the key layer to layer NK

This square matrix has dimensions of r x r, where r = 3N + 7.
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The transformation matrix for a stacked third-order element is very similar. The only

difference is that Equations (3.87) must be replaced by the following:

NK-I () 2 W 3
= 1+~pi-1p3 + t(L1  I 1q = p, +  =1P3, - + P3i+) - + p 3i+2 )

+P3, + 3-- - P3i+4t- -- +p3i+I5 -j

2 x- ( ) ( 2 ]NK-Il / (i ) r W2

q3N 4 =_ P3N+4 + Y_ [P3i+3+ J - +JP3i+3N+3

t (1) 3 t t(i + I

+P3 i +3N+4(- + P3i+3N + (3.89)

(2 )  ( t'Y

_Pi+3N +6(-5 )2 + P3i + 3N +7,---
2 (2 p~ 3 ~ 2

NK -I (t(8) t (1) 2
z

16Nv+ 6 = P6N+6+ NK- +6+ +~+6+

+P3i+6N+7 2 )+P 3i +6N+ 8  2)

ti+ 1) t(i + 1
-P3i + 6N + 9(-- )2 +P3i +6 + 10(-- -2 3

These equations, which reflect the higher-order kinematic constraints associated with the third-order

element, lead to the transformation matrix
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All L ik = 0 except

Ljj= 1 for 1=1,2...9N+7

L = for j=l,k=2+m

j =3N+4,k =3N+4+m

j =6N+6,k =6N+7+m

m = 1,2,3

Li.k = )- j = 1,k = 3NK- I +m (3.90)

j = 3N+4,k = 3(NK +N)+ I +m

j =6N+6,k = 3(NK +2N)+4+m

m = 1,2,3

Lk 2 =l,k = 3i - 1 +m

I 3N+4,k = 3(i +N)+ 1 +m

j =6N+6,k = 3(i +2N)+4+m

m-1 and3

i =2,3,...NK- 1

The dimensions for this matrix are r x r, where r = 9N + 7.

Once the proper transformation matrix is defined, the local mass and stiffness matrices

associated with moving the key layer up to the desire lamina are found using the general matrix

transformation given by Equation (3.66). The transformations for these matrices are given explicitly

as

M* = L'ML K* = LrKL (3.91)
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where

M* = mass matrix for element with new key layer

K* = stiffness matrix for element with new key layer

It should be noted that all transformations allow the key layer to move in the positive vertical

direction only.

3.6. Solution Procedure for Free Vibration Problems

Figure 3.15 shows the kind of discretized beam model used in this study to find the natural

frequencies of composite beams. As can be seen, the model is made up of a series of finite elements

capable of accounting for the nonhomogeneous nature of composite beams. A requirement not

portrayed explicitly in Figure 3.15 is that the elements on the ends of the model must be restrained

in some way to prevent rigid-body motion.

yv

interior node inter-element node node NN

end node td--(d
(2) x,u

layer (1) _ _ _ __ _ _ __ __ _ _ __

I-- 1 -. "'element NE

L

L = length of beam N = total number of layers

I= length of element NK = layer number of key layer

t (i) = thickness of lamina (i) NE = total number of elements

d = depth of beam NN = total number of nodes

Fig. 3.15 Discretized composite beam model.
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Although it is certainly possible to restrain the motion at interior points of a finite element

beam model, this feature is not generally required for the problems of interest in this investigation.

However, calculations associated with exact elasticity solutions require restrained nodes in the

interior of the beam. This exception is discussed in detail in Chapter 4.

The end conditions considered in this study are restricted to a pinned or fixed condition on

the left end of the beam and free, simply supported, pinned, or fixed conditions on the beam's right

end. The constraints each condition places on the motion of the end of the beam are summarized

in Figure 3.16. The effects of these constraints on the degrees of freedom associated with each

finite element developed for this effort are also specified in this figure. It should be noted that these

effects are expressed in terms of local degrees of freedom for the right end of each beam element,

not the global ones associated with the actual discretized beam model. It should also be noted that

any combination of left and right end conditions is valid with the exception of the pinned-free

combination.

Beam boundary conditions Finite element boundary conditions

(at x = L) Bernoulli- Timoshenko Levinson- Third-
Euler Bickford order

Free No forced
(boundary

conditions

Simply supported

S Z v(L,O,t) = 0 w 3 =O W4=O W 3 =0 W4 =0

Pinned u(LO,t) = 0 U 3 =O U 3 =O U 3 =0 U 3 =0

v(L,0t) = 0 W 3 =0 W4 =0 W 3 =0 W4 =0

Clamped u(L,yt) = 0 U 3 = 0 U 3 
= O U 3 = O U 3 = 0

v(Ly,t) = 0 W 3
= 0 W4 =0 W 3

= 0 W4 =0

W4 =0 ( 3 =0 W 4 =0 0 (i)0 3 = 0
'3 = 0 (i = 1,2,3)

Fig. 3.16 Finite element boundary conditions.
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All finite element programs developed in this effort to solve the free vibration problem pictured

in Figure 3.15 follow the procedure outlined in Figure 3.17. As can be seen, the first step is to read

the input data required to derive the local mass and stiffness matrices. After the local matrices are

derived using the input data, these matrices are assembled to generate the global mass and stiffness

matrices. Then the global matrices are modified to account for the forced boundary conditions

associated with the problem of interest.

{
Read input data j Invert global mass matrix

Generate local mass Premultiply global stiffness
and stiffness matrices matrix by inverted mass matrix4 ,4
Assemble global mass Find eigenvalues and
and stiffness matrices eigenvectors of M1 K

41 4
Impose boundary conditions
by modifying global matrices Print output

I
Fig. 3.17 Flowchart for free-vibration programs.

Once the forced boundary conditions are imposed, the modified mass matrix is inverted.

Subsequently, the modified stiffness matrix is premultiplied by the inverted mass matrix. A

subroutine contained in the International Mathematical Subroutine Library (IMSL) is then used to

find the eigenvalues and eigenvectors of the resulting matrix. Finally, the natural frequencies and

mode shapes obtained from this procedure are stored in the output file and printed as required.

The programs written to perform the calculations just described run on the UXH Mainframe

computer at the University of Illinois at Urbana-Champaign. This machine, a CONVEX Computer
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Corporation Cl/C120/C210A series supercomputer, runs on the UNIX operating system and

performs calculations in 64-bit double precision and 32-bit single precision. All the results discussed

in the present study are based on double-precision calculations.

Finally, all programs make use of the IMSL subroutine call DEVCRG, which can be used to

find the eigenvalues and eigenvectors of any general, real matrix. According to the IMSL User's

Manual [1541, this subroutine balances the matrix of interest, reduces the balanced matrix to a real

upper Hessenberg matrix, and computes the eigenvalues and eigenvectors associated with this

matrix. More details regarding this subroutine can be found in [154].
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4. EVALUATION OF FINITE ELEMENTS

This chapter documents the results of calculations made to evaluate the performance of the

elements developed in this study. These calculations provide the data necessary to investigate the

accuracy and convergence properties of the elements, ensure the absence of shear locking in the

shear-deformable elements, assess the accuracy of the elements using analytical and experimental

data available in the literature, and identify conditions in which stacked elements are required to

obtain reasonably accurate estimates of natural frequency. Table 4.11 provides a summary of the

calculations made in this effort. In addition, abbreviations used throughout this chapter are defined

in Table 4.2.

4.1. Accuracy

As stated in Chapter 3, complete, conforming elements for a given theory are guaranteed to

generate results which converge monotonically to the values associated with the exact solution for

that theory. The convergence properties of such elements can be portrayed graphically by plotting

the error associated with the finite element results as a function of the number of elements or the

number of degrees of freedom used in the finite element model. Figure 4.1 a provides an example

of such a convergence curve. It should be noted that although the error is actually a function of a

discrete variable rather than a continuous one, Figure 4.1 a presents this curve schematically as a

smooth, continuous function of a continuous variable.

As can be seen in this figure, the error converges monotonically to zero since the error is

calculated with respect to the exact solution for the theory upon which the element is based.

However, if the error is calculated relative to a higher-order theory, such as the theory of elasticity,

'All tables for this chapter are contained in the Appendix.
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,A (%) ,Ae(%)

0 N 0 N

(a) Error calculated with respect to (b) Error calculated with respect to
exact solution for theory upon higher-order exact solution.
which fiite element based.

N = number of elements or dof in
finite element model

A (%) = [(V - V )/ V I x 100 Vf = value from finite element solution
f s

Ae ( f = (- V )/V I x 100 V = exact value from theory
on which element is based

Ae = [(V - V )/ Ve I x 100 V = exact value from higher-order theory

Fig. 4.1 Accuracy and convergence of finite element solutions.

a curve like the one given in Figure 4.1b results. In this case, the error converges to a value which

represents the error inherent in the lower-order theory relative to the higher-order one. This inherent

error represents the minimum error attainable with a particular element.

It should be noted that applying the term "convergence" to the reduction in error depicted

by the curve shown in Figure 4.1b is not correct, strictly speaking. In a strict mathematical sense,

the term convergence should be used only when the error is measured relative to the exact solution

for the theory on which the element is based, as is the case in Figure 4.1a. When studying true

convergence, the analyst is not concerned with the accuracy of an element, only with the manner

in which its discretization error decreases as a larger number of elements is used in the finite element

model.
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However, from an engireering point of view, the analyst is usually interested in both

convergence and accuracy when evaluating the relative merits of various finite elements. The proper

element for a calculation can be chosen only after evaluating the tradeoffs between accuracy and

the rate of convergence for the various elements being considered for use.

AA = Ae . for Element A

Amax = maximum acceptable error mm
AB = A e m for Element B

A (%) A (%)

Element B FIement B

Amax 
-" .

.t

A Elezment A Element A

AA
Amax

A AB

0 NA N B N 0 NB N

(a) Scenario 1. (b) Scenario 2.
Fig. 4.2 Tradeoffs in the convergence of finite element solutions.

Two possible scenarios for such an evaluation are pictured in Figures 4.2a and b. Both these

figures present "convergence" curves for different elements (elements A and B) along with the

maximum error which the analyst can accept in each case. In the first scenario, both elements

possess adequate accuracy for the desired calculation. Therefore, element A is the most efficient

element in this case. Even though it is a less accurate element than element B, it yields results

which attain an adequate level of accuracy using fewer degrees of freedom. This reduction in the

required number of degrees of freedom leads to lower computer storage requirements and

computation time, and hence, to cheaper calculations.
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In the second scenario, a more stringent accuracy requirement makes element B the only

option. Even though it appears to have a slower rate of convergence, it is the only element capable

of providing the accuricy specified in this case.

Once again, the curves pictured in Figures 4.2a and b are not true convergence curves since

the error in these figures is measured with respect to a higher-order theory, rather than the exact

solution on which the elements are based. Therefore, the error includes that which is inherent in

the lower-order theory as well as the discretization error. However, calculating error with respect

to a higher-order solution, such as an elasticity solution, provides a convenient way to assess both

the accuracy of the various elements examined in this study and how many degrees of freedom are

required to attain this accuracy.

As a result, this approach is used throughout most of Section 4.1. In addition, the term

"convergence" is used to refer to the reduction in error associated with using more elements ( and

hence more degrees of freedom) in the finite element model regardless of whether the error is

measured relative to the appropriate beam theory for the element or with respect to a higher-order

theory. This usage gives the term a broader meaning than is usually the case, but facilitates the

discussion which follows.

This report also makes use of the following definitions to facilitate the comparison of the

accuracy of the various elements presented in this section. If an element is capable of estimating

natural frequencies to within 10% of the value obtained from an exact elasticity solution, it is said

to have first-order accuracy. Similarly, second- and third-order accuracy are defined as being able

to estimate natural frequencies to within 1% and 0.1%, respectively, of the /alues associated with

the exact elasticity solution.

In general, techniques capable of generating between first-order and second-order accuracy

are adequate for most engineering purposes. As is pointed out by Biggs 11551, sophisticated
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techniques capable of providing greater accuracy are not required in most cases since input data,

such as. geometric or material properties, are not usually known with enough precision to justify

the use of such techniques [ 1551. Therefore, third-order accuracy is seldom required, but it is used

in this study to identify elements capable of generating extremely accurate results.

4.1. 1. Accuracy of Present Elements

This section examines the accuracy and convergence behavior of all elements developed in

this study when used to model the free vibrations of homogeneous isotropic and orthotropic beams

as well as composite beams of fiber-reinforced and sandwich construction. As specified in Table

4. 1, all calculations related to accuracy and convergence are identified by a "C" prefix to distinguish

them from the accuracy calculations discussed in Section 4.3. In addition, all calculations discussed

in this section are labeled with the "Cl" prefix. The homogeneous, isotropic beam associated with

case CI-IS is assumed to be made out of aluminum. The homogeneous, orthotropic beam, case

Cl-OR, is made of a material with the properties of graphite-epoxy. Finally, cases C1-L3 and

C l-S3 correspond to the three-lamina graphite-epoxy beam and aluminum-balsa sandwich beam,

respectively, used in the study of convergence for composite beams.

The material and geometric properties, as well as the boundary conditions, for each case are

specified in Table 4.3. As can be seen, all calculations involve beams with a spar,-to-depth (Lid)

ratio of 10. The material properties listed are not associated with any particular kind of aluminum,

graphite epoxy, or balsa wood, but are meant to be representative values for these materials. The

properties chosen for the aluminum are based on values given by Beer and Johnston in [ 1561. The

elastic constants for the graphite-epoxy beams were obtained from a paper by Whitney and Sun

[ 1571; the density was acquired from work done by Khdier and Reddy [ 1581. Finally, the properties

of the balsa wood were chosen based on information found on page 252 of Allen's text [241. In
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many of the cases investigated in Chapter 4, only a Young's modulus or a shear modulus could be

found. In such cases, the remaining modulus is estimated using the relation found in Equation (2.3)

in conjunction with a Poisson's ratio of 0.25.

Data required to generate convergence curves for all the elements developed in this effort

were obtained for the four cases of interest from calculations which employed 1,2,4,8,12, and 16

elements in the finite element model of the beam. Only data for the first and fifth modes of bending

are examined in this study of accuracy and convergence. Since the beams have an Lid ratio of 10,

the first mode is associated with a fairly thin beam. However, because si,.;ly -upported boundary

conditions are employed in all calculations, the fifth mode can be thought to represent the

fundamental mode of a beam with a span-to-depth ratio of 2, a condition in which shear deformation

should have a significant influence on the natural frequencies for all the cases considered in this

study.

The data from this study are summarized in Tables 4.4 through 4.7. These tables provide the

actual frequencies obtained from each calculation, and specify both the number of elements and

number of degrees of freedom contained in the finite element models from which the data were

obtained. The number of degrees of freedom refers to the number which remain after the

pinned-simply supported boundary conditions are imposed on the finite element model.

Elements considered in this study include the Bernoulli-Euler element, which accounts for

rotary inertia, as well as the Timoshenko, Levinson-Bickford, and general third-order elements. In

addition, the stacked Timoshenko element and stacked third-order element are examined. Shear

correction factors of k=5/6 and k=1 are employed in an effort to bound the response of the

Timoshenko beam model using fairly standard values for this factor. This study uses the terms

"corrected Timoshenko element" and "basic Timoshenko element" to differentiate between

simple Timoshenko elements which use a correction factor of k=5/6 and k=l, respectively.
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The stacked elements are used to estimate the response of the homogeneous beams, as well

as the composite beams, to see if the increased number of degrees of freedom associated with these

elements gives them any advantage over the simple elements in the homogeneous cases. The stacked

finite element model for these cases divides the beam into three equal layers and imposes an

independent kinematic constraint on each of these layers.

As can be seen, error with respect to an exact elasticity solution is provided in these tables.

The elasticity solution is a plane-stress solution similar to the plane-strain solutions developed by

Jones [16] and Kulkarni and Pagano [17]. All elasticity solutions ignore the coupling between

longitudinal and lateral motion cau'ed by Poisson effects, and attempt to suppress transverse normal

strain by using values for the transverse Young's modulus which are three orders of magnitude

larger than the associated longitudinal modulus. These conventions were adopted to allow

differences between the finite element solutions and the elasticity solution to be attributable to

discretization error and approximate kinematic constraints only. The importance of ignoring

Poisson's effects and transverse normal strain is addressed in the study of element accuracy discussed

in Section 4.3.1 of this report.

In addition to error relative to an exact elasticity solution, error with respect to the associated

beam theory is provided for the Bemoulli-Euler and Timoshenko elements. The exact solutions

for these theories were obtained using the technique presented by Huang in [35] modified to account

for the properties of composite beams. The data in these comparisons represent true convergence

data in the strict mathematical sense of the word.

The information given in these tables is presented in a graphical form in Figures 4.3 through

4.6. These figures plot the error relative to the exact elasticity solution as a function of the number

of degrees of freedom contained in the finite element model after the boundary conditions are

imposed.
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As can be seen in Figures 4.3a and b, all elements developed in this study are capable of

first-order accuracy for the first mode of the homogeneous, isotropic aluminum beam. In addition,

all elements except the Bernoulli-Euler element and stacked Timoshenko beam possess

second-order accuracy. The fact that even this element comes very close to this level of accuracy

indicates shear deformation does not have a significant influence on the natural frequency in this

case.

Percent Error

BR TI T L

2.0

1.3

1.0

0.2 ......

0.0 
I

5 10 15 20 25 30 35

Degrees of Freedom

(a) Mode 1 (Elements BR,T1,T & L).

Fig. 4.3 Accuracy data, Case CI-IS.
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Percent Error
1.0

L M TS MS

0.1~~- ---- --- -- -- -- -- -- -- -- -

0.0 IQ

20 40 60 80 100

Degrees of Freedom

(b) Mode 1 (Elements L,M,TS & MS).

Fig. 4.3 Continued.

Percent Error
40.0

BR TI T L

30.0

20.0

10.0

0.0 11111-. - -
20 2-5 30 35 40 45 50 55 60

Degrees of Freedom

(c) Mode 5 (Elements BR,T1,T & L).

Fig. 4.3 Continued.

Of the elements capable of second-order accuracy, the Levin son- Bickford element has a

slightly faster rate of convergence than the corrected Timoshenko beam, its closest competitor. This
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Percent Error
3.0
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1.

1.0

0.0
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Degrees of Freedom

(d) Mode 5 (Elements L,M,TS & MS).

Fig. 4.3 Concluded.

slight advantage is probably due to the fact that all degrees of freedom associated with lateral motion

of the Levinson-Bickford element must be at the end nodes to enforce C' continuity. As a result,

the degrees of freedom for this element do not proliferate as rapidly with an increase in the number

of elements as do the degrees of freedom associated with the other higher-order elements.

Figure 4.3a reveals that the Levinson-Bickford and simple third-order elements are both

capable of third-order accuracy, as is the Timoshenko element as long as the proper shear correction

factor is chosen. However, both the Levinson-Bickford and third-order elements achieve this

accuracy without recourse to a correction factor. Of these two elements, the Levinson-Bickford

element is clearly the more efficient one.

It should be noted that the value of k=5/6 actually makes the corrected Timoshenko beam

more flexible than the beam associated with the exact elasticity solution, a result which manifests

itself in the negative errors listed for this beam in Table 4.4. It should also be noted that even though

the exact solution for the corrected Timoshenko beam generates a natural frequency slightly lower
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than that of the exact elasticity solution, the natural frequencies obtained from the beam model

composed of corrected Timoshenko elements always approach the value for the exact Timoshenko

solution monotonically from above.

The stacked Timoshenko element is fairly competitive with the simple third-order element,

but appears to be slightly stiffer in that it converges to an error slightly larger than 0.1%. The data

in Table 4.4 reveal that the stacked third-order element should not be used in situations similar to

case Cl-IS since its accuracy is identical to that of the simple third-order beam, but is achieed

with a much greater number of degrees of freedom.

Figures 4.3c and d show that the results for the fifth mode in this case are generally similar

to those observed for vibration in the first mode. Notable exceptions 1icludc the inability of the

Bernoulli-Euler element and Timoshenko element (k=l) to achieve first-order and second-order

accuracy, respectively. These results indicate that shear deformation plays a greater role in this

mode of vibration.

The influence of shear deformation can be seen at lower modes in the orthotropic beam

examined in case Cl-OR. Table 4.5 and Figure 4.4a reveal that the Bernoulli-Euler element is

incapable of first-order accuracy even for the first mode in this case. In addition, the basic

Timoshenko element (k=l) does not possess second-order accuracy. Once again, using corrected

Timoshenko elements leads to a beam model which appears to be more flexible than the beam

associated with the elasticity solution. However, the magnitude of the error associated with this

model is still within the range of third-order accuracy.
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(a) Mode 1 (Elements BR,T1,T & L).

Fig. 4.4 Accuracy data, Case Cl-OR.
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(b) Mode 1 (Elements LM,TS & MS).

Fig. 4.4 Continued.
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(c) Mode 5 (Element BR).

Fig. 4.4 Continued.
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(d) Mode 5 (Elements TI,T & L).

Fig. 4.4 Continued.

The Levinson-Bickford and simple third-order elements (Figure 4.4b) are also capable of this

accuracy with the former element attaining this level of performance with the fewest degrees of



136

Percent Error
5.0

L1 Ms

3.4 ------------------------------------------------------------------

1.7 ------------ - - - - - - - - - - - - - - - - - - - - - - - - -

0.4 ---------------------- ----------------------------

0.0

0 100 200 300 400

Degrees of Freedom

(e) Mode 5 (Elements L,M,TS & MS).

Fig. 4.4 Concluded.

freedom. As in the isotropic case, this element enjoys a slight advantage in terms of convergence

over the corrected Timoshenko element and a fairly substantial advantage relative to the simple

third-order element.

The stacked Timoshenko beam is not as competitive with the simple third-order element in

this case in that it barely achieves second-order accuracy. In addition, the accuracy of the stacked

third-order element is similar to that of its simple counterpart, but attains this accuracy with a much

larger number of degrees of freedom.

In the fifth mode (Figures 4.4c-e), trends seen in the progression from the isotropic to the

orthotropic case are even more pronounced. The Bernoulli-Euler element is not even capable of

zero-order accuracy, producing an error around 170%. In addition, neither the corrected nor the

basic Timoshenko element can attain second-order accuracy. The fact that the results obtained with

these elements bound the exact elasticity solution may indicate that the actual distribution of shear

strain over the depth of the beam for this mode is somewhere between the parabolic distribution
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associated with k=5/6 and the uniform distribution related to k= 1. The fact that the corrected element

appears to be too flexible and the basic element too stiff also implies greater accuracy may be

obtained by using a shear correction factor between these values. However, determining this value

a priori may prove difficult.

One major difference seen in the data presented in Figure 4.4e is that the Levinson-Bickford

element is no longer the most efficient element if second-order accuracy is required since the error

for this element converges to a value of 1.7% for this case. Of the simple elements, only the

third-order element is capable of this level of accuracy. It should be noted that the element achieves

this level of performance without resorting to the use of a correction factor.

A continued deterioration in the performance of the stacked Timoshenko element relative to

the simple third-order beam is apparent. Although the error for the stacked element converges to

3.4%, a value probably adequate for many engineering purposes, the error for the simple third-order

element is an order of magnitude lower and is achieved with the same number of degrees of freedom

as used by the stacked Timoshenko beam model.

It should be noted that the stacked third-order element is the only one capable of third-order

accuracy. However, the large number of degrees of freedom required to attain this level of

performance still make this element unattractive to use in cases involving homogeneous beams.

The results for the three-lamina graphite-epoxy beam, presented in Table 4.6 and Figure 4.5,

are very similar to those just discussed with the exception that the corrected and basic Timoshenko

elements appear to be stiffer relative to the exact elasticity solution than was the case for the

homogeneous orthotropic beam.
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(a) Mode 1 (Elements BR,T1,T & L).

Fig. 4.5 Accuracy data, Case C1-L3.
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(b) Mode 1 (Elements L,M,TS & MS).

Fig. 4.5 Continued.
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Fig. 4.5 Continued.
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(d) Mode 5 (Elements Ti,T & L).

Fig. 4.5 Continued.

In addition, the fifth mode for the laminated case is the first situation encountered in this

investigation in which the simple third-order element cannot attain third-order accuracy (Figure
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(e) Mode 5 (Elements L.M,TS & MS).

Fig. 4.5 Concluded.

4.5e). However, this simple element is still more accurate than the stacked Timoshenko beam.

Evidently, the piecewise-linear profile of shear strain over the depth of the composite beam afforded

by the latter element leads to a finite element beam model which is stiffer and less accurate than

the one associated with the simple third-order element, in which the distribution of shear strain is

continuous and quadratic.

Although the stacked third-order element is capable of third-order accuracy, it is still not an

attractive alternative since the level of performance achieved by the simple third-order element and

even the Levinson-Bickford element are probably adequate for most engineering applications and

are attained wiLi f"r fewer degrees of freedom.

However, Table 4.7 and Figure 4.6 reveal that stacked elements are absolutely essential for

estimating the response of the three-layer aluminum-balsa sandwich beam considered in case Cl-S3.

In this case, the Bernoulli-Euler and Timoshenko elements yield errors of about 90% for the first

mode. Although the errors for the Levinson-Bickford and simple third-order theories are lower
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(55% and 37%, respectively), these errors are still far greater than the 10% error associated with

first-order accuracy in this study. However, both stacked elements are capable of third-order

accuracy for the first mode. In addition, the stacked third-order element can achieve this level of

performance in the fifth mode of vibration (see Table 4.7).
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(a) Mode 1 (Elements BR,TI,T & L).

Fig. 4.6 Accuracy data, Case C1-S3.

However, the higher rate of convergence of the stacked Timoshenko beam probably makes

it the element of choice in cases involving sandwich beams made up of highly dissimilar materials.

The combination of material and geometric properties which lead to the requirement for stacked

elements is discussed in detail in Section 4.4.

Several conclusions can be drawn from the study just discussed. For one thing, it is apparent

that shear deformation restricts the use of Bernoulli-Euler elements to the fairly benign conditions

associated with the lower modes of fairly long and slender isotropic beams. Higher-order elements

are required for other cases in which shear deformation has a larger influence on beam vibration.
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(b) Mode 1 (Elements L,M,TS & MS).

Fig. 4.6 Concluded.

The Timoshenko element can be quite accurate in such cases if the proper shear correction

factor is chosen. The standard value of k=5/6 appears to be adequate for the lower modes of isotropic,

orthotropic, and laminated composite beams. However, it leads to a beam which is more flexible

than the one associated with the exact elasticity solution. The attendant underestimation of natural

frequency becomes more pronounced as the degree of orthotropy of the beam increases (i.e., as the

ratio of Young's modulus in the longitudinal direction to the transverse shear modulus increases),

and as higher modes are encountered.

The Levinson-Bickford element turns out to be a very good element for most cases examined

in this portion of the convergence study. Its accuracy is probably adequate for most engineering

purposes, except for the sandwich beam considered in case C1-S3. In addition, its rate of

convergence is higher than the other higher-order elements developed in this effort. It also enjoys

the advantage of achieving these results without recourse to a shear correction factor.
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The simple third-order element also has the advantage of not requiring a shear correction

factor. In general, it can attain a higher level of accuracy than the Levinson-Bickford element, but

pays for this accuracy with a much lower rate of convergence. The stacked Timoshenko element

with three layers has a similar rate of convergence, but is outperformed slightly in terms of accuracy

by the simple third-order elements for all cases except the sandwich beam. In the cases not involving

the sandwich beam, the accuracy of the stacked third-order element is equal to or better than that

of its simple counterpart, but is attained with a much larger number of degrees of freedom, a fact

which makes it an unattractive alternative in these cases.

However, the stacked elements are essential in cases similar to the sandwich beam in which

the properties in adjacent layers are quite dissimilar. For cases requiring these elements, the stacked

Timoshenko element appears to be more efficient. It is not as accurate as the stacked third-order

element, but is capable of providing adequate accuracy with less degrees of freedom.

It should be noted that natural frequency is the only parameter discussed in this study of

accuracy. For cases in which the stresses associated with free or forced vibration of a sandwich or

fiber-reinforced composite beam are of interest, the higher-order kinematic constraint of the stacked

third-order element may be required to estimate the magnitude and distribution of these stresses

adequately. The comparison made by Yuan and Miller [ 128] with the exact elasticity solution of

Pagano [9] for static loading supports this conjecture.

Finally, the data in Tables 4.4 through 4.7 reveal that all elements appear to converge to within

1 % of the associated exact solution for the first and fifth modes when eight or more elements are

used. Based on this conclusion, all calculations made to evaluate the accuracy of these elements

against data found in the literature involve finite element beam models made up of eight or more

elements.
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4.1.2. Comparison of Present Elements with Other Elements

In addition to the accuracy study just discussed, calculations were made to compare the

accuracy and convergence of elements developed in this effort to the accuracy and convergence of

elements which appear in the literature. The elements considered in this subsequent set of

calculations include Timoshenko beams discussed in the work of Thomas, et al. in [ 1111 and the

third-order element developed by Kant and Gupta 1641.

Calculations associated with the elements examined in [ 1111] include cases C2-IA and C2-IB;

cases C3-IA and C3-IB are associated with the elements described in [64]. Table 4.8 summarizes

the properties of the homogeneous, isotropic beams considered in these cases. As can be seen,

cases C2-IA and B involve cantilever steel beams. The simply supported aluminum beam of interest

in case Cl-IS is also investigated in cases C3-IA and B. The results of the calculations associated

with these cases are in Tables 4.9 and 4.10, and Figures 4.7 through 4.9.

Percent Error
3

2

0
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Degrees of Freedom

Mode 3 (L/d = 14.4)

Fig. 4.7 Convergence data, Case C2-IA.2

2Values from [I1 1 obtained from a graph.
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Figure 4.7 compares the Timoshenko beam developed in the present effort to elements

discussed in [ 1111. It should be noted that the axial degrees of freedom of the Timoshenko element

developed in the present effort are not included in the data used to generate the convergence curves

for this element seen in Figures 4.7 and 4.8.

As can be seen in Figure 4.7, this element is very competitive with the elements examined

by Thomas, et al., in terms of accuracy, but has a rate of convergence which is generally lower than

the element of Archer [101] and Thomas, et al. [111]. Figure 4.7 shows the elements of Kapur

[1031 and Nickel and Secor [106] to be slightly more efficient than the Timoshenko element of the

present effort.

Percent Error

J~ [ 1  [101] [159]

5

0
0 10 20 30 40

Degrees of Freedom

Mode 3 (L/d = 5.8)

Fig. 4.8 Convergence data, Case C2-IB.

Figure 4.8 reveals that the present element outperforms the element of Carnegie, et al. [159].

In addition, it compares more favorably with the elements of Archer [ 103] and Thomas, et al. [ I I

3 Values from [11 1 obtained from a graph.
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for case C2-IB where the effects of shear deformation are more pronounced than they are in Case

C2-IA. It should be noted that the present Timoshenko element also has the advantage of being

able to model axial motion and composite beam behavior. However, it cannot model the response

of linearly tapered beams as some of the elements discussed in [ 111 ] can.
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(a) L/d = 10.

Fig. 4.9 Accuracy data, Case C3-IA.

The comparisons given in Figure 4.9 indicate that the higher-order elements developed in

this effort appear to be more robust than the third-order element of Kant and Gupta [641. Figure

4.9a presents data for the first mode for a beam with a span-to-depth ratio of 10. As can be seen,

the element of Kant and Gupta converges very slowly relative to the elements of the present effort.

Kant and Gupta's element does much better for the thicker beam with Lid = 2 associated with

Figure 4.9b; however, it is still outperformed by all elements in the present effort in terms of rate

of convergence, and by all save the basic Timoshenko element (k=l) in terms of accuracy. It should

be noted that the axial degrees of freedom of the present elements are retained in these comparisons.

4 Values from [641 obtained from a graph.



147

Percent Error

TI L M ]A ... _E -_-___ .. [

4

2.9 ------------------ A

20 40 60 s0 100

Degrees of Freedom
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Fig. 4.9 Concluded.

Although it cannot be stated with certainty, the convergence data seen in Figure 4.9 as well

as other convergence curves presented in [641 indicate the element of Kant and Gupta may be subject

to shear locking. All displacements in this element are interpolated with linear shape functions;

therefore, the conditions for shear locking specified by Prathap, et al. [107,108] are present. In

addition, a deterioration in convergence is evident when this element is used to examine a fairly

thin beam (Figure 4.9a) rather than the thick beam of interest in Figure 4.9b. Finally, data in [64]

(Figure 10 on p. 199 of [64]) seem to indicate the natural frequencies calculated by this element

converge to values greater than those obtained from Bernoulli-Euler theory when even thinner

beams (Lid = 20) are examined.

Regardless of whether shear locking is present or not, the higher-order elements developed

in the present effort are superior to the element proposed by Kant and Gupta in the cases considered

in this section. In addition, the present elements appear to be more robust in that their performance

does not deteriorate when thinner beams are examined.
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4.2. Shear Locking

To ensure that all elements developed in this effort do not lock in the thin-beam limit,

calculations were performed to evaluate the performance of these elements as Lld becomes large.

These calculations involve all the cases considered in Section 4.1.1 and include beams with

span-to-depth ratios of 10, 100, 1000, and 10,000. All the data for this study of shear locking were

obtained from finite element beam models containing eight elements. Only data for the fundamental

mode of vibration are considered in this study.

Table 4.11 summarizes the data from this study. In this table, all natural frequencies are

normalized with respect to the natural frequencies obtained from the exact solution for a

Bernoulli-Euler beam with rotary inertia. As in the convergence study documented in Section 4. 1. 1,

natural frequencies associated with this theory were obtained using the method of Huang [35]

modified to account for the properties of composite beams.

For fairly thick beams, normalized natural frequencies having a value less than one reveal

the influence of shear deformation on the vibration of the beam. If shear locking exists, it should

manifest itself by producing normalized natural frequencies greater than one as the thin-beam limit

is approached.

As can be seen in Table 4.11, shear deformation does have an effect on the fundamental mode

of vibration at the lowest span-to-depth ratio (LId = 10), as might be expected from the information

presented in Section 4.1. 1. In addition, this effect is more pronounced for the orthotropic, composite,

and sandwich beams than for the homogeneous, isotropic beam considered. However, all solutions

presented in Table 4.11 converge to the Bernoulli-Euler solution for span-to-depth ratios of 100

and 1000. The only case in which a very minor shear-deformation effect can be detected at these

Lid ratios is the sandwich beam for Lid = 100, in which the most powerful elements estimate



149

normalized natural frequencies about 1% below unity. These results indicate that shear locking is

not present in the finite element models for very thin beams with span-to-depth ratios of 1000 or

less.

T T

However, this good performance does not extend to even thinner beams having Lid ratios of

10,000. In this range, anomalous results are evident in the data for some of the elements. At present,

the source of these anomalies is not known, but they do not appear to be caused by shear locking

since some of the elements register natural frequencies lower than those obtained from the

Bernoulli-Euler beam theory. In fact, some of the eigenvalues calculated at this Lid ratio are actually

negative. Such eigenvalues are obviously in error since the positive-definite nature of both the mass

and stiffness matrices prohibits the existence of such eigenvalues.

As stated above, the cause of these anomalous results is not known currently, although they

may be numerical in nature. One feature of the IMSL subroutine used in the finite element programs

for the present elements is that it provides a performance parameter which can be used to judge the

validity of the results generated by the subroutine (see p. 298 of [154]). Confidence in the results

decreases as the value of the parameter increases. The value of this parameter does increase as the

thin-beam limit is approached, indicating that numerical problems are more likely. However, it

should be noted that all performance parameters examined in this study are well within the range

in which acceptable results can be expected. Therefore, the cause of the anomalous values seen at

L/d=10,000 cannot be identified positively with the data available at the present time.

The questionable data seen at the highest Lid ratio indicate the elements cannot be used with

confidence for span-to-depth ratios greater than 1000. However, the other results listed in Table

4.11 lead to the conclusion that shear locking does not appear to be a problem at or below

span-to-depth ratios of 1000. Therefore, the elements should produce results which are valid, within

the limits of their respective theories, in this range of the Lid ratio. This range should cover most,

if not all, situations of practical interest.



150

4.3. Evaluation of Accuracy Using Published Data

The purpose of this section is to evaluate the performance of the elements developed in this

study against data available in the literature, including data from exact elasticity solutions (Section

4.3.1), higher-order analytical solutions (Section 4.3.2), and experimental efforts (Section 4.3.3).

All finite element calculations for this portion of the evaluation effort were made using ten-element

beam models. This number of elements was chosen in an attempt to attain third-order accuracy

(relative to the appropriate beam theory) for modes as high as the fifth mode. This appears to be a

reasonable expectation in light of the results obtained in the convergence study discussed in Section

4.1.1.

4.3.1. Exact Elasticity Solutions

The first set of accuracy calculations compares results obtained using the present elements against

data for composite plates in cylindrical bending obtained by Kulkami and Pagano [ 17] and Jones

[161 using a plane-strain elasticity solution. In both these references, a solution is obtained by

assuming sinusoidal fields for longitudinal and lateral displacements similar to those specified for

beam theories in Equations (2.54). The sinusoidal fields are chosen to satisfy the boundary

conditions associated with simple supports. The resulting solution yields an infinite number of

natural frequencies for each assumed mode shape. For symmetric . Omposites, thc tirst and second

natural frequencies correspond to flexural and extensional responses, respectively. For composites

of nonsymmetric configuration, these responses are coupled for each assumed mode shape, and

distinct flexural and extensional responses do not exist, strictly speaking. However, both references

still associate the first natural frequency for a given mode of a nonsymmetric composite with the

term "flexural" response and the second such natural frequency with the term "extensional"

response.
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The material properties, geometric properties, and boundary conditions for the cases

considered in this evaluation are detailed in Table 4.12. As can be seen in this table, all cases involve

simply supported composite beams made of fiber-reinforced laminates. The two cases from [17]

involve mildly orthotropic layers arranged in symmetric and nonsymmetric configurations. Both

cases taken from Jones [ 16] deal with nonsymmetric composites, but consider a strongly orthotropic

material in addition to a mildly orthotropic material. The latter material is similar, though not

identical, to the material used in the cases taken from [17].

It should be nozed that the solutions discussed in [17] and [16] are for two-dimensional

problems in plane strain whereas the finite elements developed in this effort assume conditions of

plane stress. Plane-stress techniques can be used to analyze plane-strain problems simply by

modifying the material properties used in the plane-stress method, as outlined in Equations (2.2).

However, these modifications were deemed unnecessary in this set of calculations since material

properties affected by this modification increase by at most 2% for the cases considered in this

section.

x=0 x;L/2 x=L

Fig. 4.10 Elasticity boundary conditions.

However, all finite element programs were modified to account for the boundary conditions

actually associated with the sinusoidal displacement fields assumed in the exact elasticity solution
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for the first mode shape. As shown in Figure 4.10, these boundary conditions involve two sets of

distributed rollers. One set acts at x = 0 and x = L to restrict the vertical motion of all points located

at the ends of the beam while allowing these points total freedom in the longitudinal direction. The

other set acts at x = L/2 and restricts the longitudinal motion of all points along the centerline of

the beam, but allows these points to move freely in the vertical direction. Therefore, the modified

finite element programs restrict all vertical motion at x = 0 and x = L and all longitudinal motion

at x = L/2, but do not constrain the remaining degrees of freedom. Although the former restriction

can be approximated accurately with the pinned-simply supported boundary condition already

available in the programs, the latter restriction cannot be enforced without modifying the programs.

The results from references [17] and [161 are given in the form of dispersion curves which

plot nondimensional natural frequency as a function of md/L, where m is the mode number, d is

the depth of the beam or one-way plate, and L is its length. The nondimensional natural frequency

used by Kulkarni and Pagano [171 is given in Equation (4.1).

Frequency = CD/Co 0

Wf (4.1)

where

E = Young's modulus in the longitudinal direction (i.e., in the direction the fibers are aligned)

p = mass density

Equation (4.2) gives a similu expression used by Jones in [16].
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Frequency = -CDo

mIE R/-1
o - ,t/ 7 (4.2)

E-

where

v = Poisson's ratio for lateral strain caused by strain in the longitudinal direction

vY = Poisson's ratio for longitudinal strain caused by strain in the
lateral direction

Once again, the longitudinal direction is the direction in which the fibers run.

It should be noted that the dispersion curves obtained by Kulkarni and Pagano and by Jones

account for Poisson's effects as well as transverse normal strain, two phenomena ignored in the

exact elasticity solutions generated for the convergence studies discussed in Section 4.1.1.

Therefore, comparisons of finite element results against data from [ 17] and [16] should indicate if

and when the importance of these effects render the present finite elements unusable.

Dispersion curves for the cases considered in this evaluation are given in Figures 4.11 and

4.12. Data obtained from the finite element calculations associated with this evaluation are tabulated

in Tables 4.13 and 4.14 and plotted in Figures 4.11 and 4.12 as well.
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(a) Case A1-L3-KP.

Fig. 4.11 Comparison with Kulkarni and Pagano [171.
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(b) Case AI-L2-KP.

Fig. 4.11 Concluded.

Figure 4.11 a compares the results for the symmetric case of Kulkarni and Pagano [17 to the

data obtained using the Bernoulli-Euler and simple third-order elements. Only data from these two
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elements are plotted in Figure 4.11 since all other elements provide data almost identical to those

of the simple third-order element. As can be seen, the higher-order element does an excellent job

matching the dispersion curve associated with flexural response. The results for the Bernoulli-Euler

element show the necessity of accounting for shear deformation in these calculations as the

magnitude of md/L increases (i.e., as the mode number increases or as the span-to-depth ratio

decreases). The effects of sheardeformation significantly reduce the accuracy of the Bemoulli-Euler

element above a value of mdIL equal to 0.2. This value can be thought of as corresponding to the

first mode of vibration for a beam with an Lid ratio of 5, or to the second mode for a beam having

a span-to-(Iepih ratio of 10.

The good agreement seen in the bending data from the third-orderelement reveals that ignoring

Poisson's effects and transverse normal strain does not adversely affect the accuracy of the

higher-order elements in this case.

Results for the extensional response indicate that the simple third-order element, though

slightly more flexible than the Bernoulli-Etler element in axial response in this case, estimates

extensional natural frequencies much higher than those of the exact solution of Kulkarni and Pagano

at values of rnd/L above 0.4. Apparently, the kinematic constraint of the third-order element is not

capable of niodeling the effect sheardeformation has on the axial motion as the composite considered

by Kulkarni and Pagano in this case gets thicker relative to its length.

Similar trends are seen in the data from the nonsymmetric case provided in Figure 4.11 b. The

highcr-order element does a good job modleling the "flexural" response of the composite, but does

not faithftilly reproduce the "extensional" response seen in the solution from I 171. In general, the

finite element solutions for this case appear to be more flexible as the result of coupling induced

by the lack of'symmetry in the composite. This flexibility ailows the finitc clement results to follow
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the curve for extensional response more closely, but significant differences still develop after md/L

acquires a value of 0.6. Once again, the limitations of the Bemoulli-Euler element become apparent

for both kinds of response as md/L increases.
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(a) Case A1-L2-J1.

Fig. 4.12 Comparison with Jones [161.
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(b) Case A 1-L2-J2, elasticity solution.

Fig. 4.12 Continued.
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Fig. 4.12 Continued.
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Fig. 4.12 Concluded.

Comparisons with the solutions of Jones [16] given in Figure 4.12 reveal much the same

thing. These comparisons extend the maximum value of md/L30% beyond the maximum value

seen in the work of Kulkarni and Pagano.

As in Figure 4.11, only the results obtained using the Bemoulli-Euler and simple third-order

element are provided in Figure 4.12a for the mildly orthotropic case. The third-order element yields

results which are in excellent agreement with the exact solution for the "flexural" response. Once

again, ignoring Poisson's effect and transverse normal strain does not seem to have much impact

on the performance of the third-order element, even for modes or L/d ratios in which the depth of

the beam exceeds the wavelength of flexural vibration.

Agreement for the "extensional" mode appears to be better than that observed in Figure 4.11,

but it is still poor for large values of md/L. As expected, the range of the Bemoulli-Euler element

is limited to fairly low values of md/L (0.2 or less).
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Data presented in Figures 4.12b-d provide the severest test of the finite elements discussed

so far since the material involved in this case possesses a high degree of orthotropy as characterized

by the high ratio of Young's modulus in the longitudinal direction to the transverse shear modulus.

Data from the Levinson-Bickford and simple third-order elements are included in the comparison

for the flexural response since these data bound the results obtained from finite element calculations

made with higher-order elements.

The maximum error for the simple third-order element is about 10% and occurs at a value of

mnd/L which is quite large. This error is attributed mainly to ignoring the effect of transverse normal

strain since accounting for this strain should make the elements more flexible, and hence lower the

natural frequencies obtained from them. Even in this extreme condition, the simple third-order

element is capable of first-order accuracy. The data in Table 4.14 reveal that the corrected

Timoshenko and simple third-order element have accuracy comparable to that of the stacked

elements, a trend seen in the composite-beam case considered in the convergence study of Section

4.1.1.

The Levinson-Bickford beam is not as robust as these other higher-order elements. It seems

to get stiffer and stiffer as the value of md/I increases. The maximum error associated with this

element relative to the exact solution for the bending response is about 60%. Although this element

is out performed by the other higher-order elements, it is obviously better than the Bernoulli-Euler

element for this case.

Higher-order results for the extensional response are bounded by the corrected Timoshenko

element (k = 5/6) and the stacked third-order element. The latter element yields data which follow

the dispersion curve for this response fairly faithfully, although a maximum error of about 15% is

observed at large values of md/L. The Timoshenko element is much stiffer, perhaps because it is

unable to account for the effects of shear deformation on the axial response of the beam. However,

it is obviously superior to the Bemoulli-Euler element in this case.
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In summary, comparing results generated by the elements developed in this effort with the

exact elasticity solutions found in [17] and [16] reveals that the shear-deformable elements can

estimate bending frequencies quite well in most cases considered. The generally good performance

of these elements indicates that they do not seem to be unduly hampered by ignoring Poisson's

effect and transverse normal strain. However, they are not as good at predicting the axial response

in the cases considered.

4.3.2. Higher-Order Theories

This section evaluates the performance of the finite elements developed in this effort against

data obtained from higher-order beam theories. Theories considered include Levinson's beam

theory [56,57], the sandwich beam theory of Yan and Dowell [86], and the finite element formulation

of Kao and Ross's [891 theory for multilayer sandwich plates implemented by Khatua and Cheung

[1261. The material properties, geometric properties, and boundary conditions for all cases

considered in this portion of the evaluation study are summarized in Table 4.15.

In [57], Levinson compares the performance of his theory against exact solutions from

Bemouli-Euler theory (no rotary inertia) and Timoshenko theory. Several correction factors are

selected for the Timoshenko solutions. As seen in Table 4.15, this comparison involves a

homogeneous aluminum beam with clamped-free or clamped-clamped boundary conditions.

Table 4.16 compares some of these data for the first and fourth modes of these beams with

results obtained using the simple Timoshenko beam (k = 5/6) and third-order elements as well as

the Levinson-Bickford element developed in this study. Several trends are evident in the data

presented in this table. First, the Timoshenko element estimates natural frequencies which are in

close agreement with the exact Timoshenko calculations of Levinson. Although the agreement is

better for the cantilever beam than for the clamped-clamped beam and for the first mode than the

fourth, the largest error seen is still less than 0.1%.
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Second, all finite element calculations yield natural frequencies which are higher than those

associated with the exact Levinson solution. It should be noted that the discrepancies between the

Levinson-Bickford element and the exact Levinson solution are due to the energy formulation used

in the former method and the direct approach taken to develop the theory associated with the latter

(see [58,59]). The differences between Levinson's results and the finite element estimates become

more pronounced as the mode number increases or as the freedom of the ends of the beam becomes

more restricted.

Levinson was motivated to develop his beam theory, in part, by a desire to avoid having to

calculate the shear correction factor associated with Timoshenko's beam theory. But it appears

that he was also motivated, as was Krishna Murty [51], by a desire to match the experimental data

of Traill-Nash and Collar [42] and Kordes and Kruszewski [43] more closely. In comparison with

these experimental data, Timoshenko beam theory with k = 5/6 appears to be too stiff in that it

estimates natural frequencies slightly greater than those obtained in the experiments.

Therefore, both Levinson and Krishna Murty sought theories which yield natural frequencies

below those estimated by Timoshenko beam theory with k = 5/6. In addition, Krishna Murty [511

criticized the work of Cowper [45], since in general it leads to a higher correction factor and

consequently a higher estimate of natural frequency. This trend runs counter to what appears to be

required in the experimental results found in [421 and [43].

However, the comparisons presented in Section 4.1.1 indicate that, in general, Timoshenko

beam theory with k = 5/6 yields natural frequencies which are actually below those calculated using

an exact elasticity solution. Therefore, higher values of the correction factor are indeed required

to bring the results from Timoshenko theory more in line with those obtained using the more exact

theory of elasticity.
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The fact that Timoshenko beams with a correction factor of 5/6 appear to be too stiff in

comparison to beams used in experiments, but too soft relative to the exact elasticity solution may

indicate that some mechanism not accounted for by either Timoshenko beam theory or elasticity

theory is responsible for the lower frequencies observed in testing. For example, compliance of

the beam's supports or damping are two mechanisms which can reduce the natural frequency of a

beam. If so, the theories of Levinson and Krishna Murty may appear to give better results, but for

the wrong reason.

Table 4.15 reveals that the beam associated with the Yan and Dowell 186] calculations contains

a layer of concrete sandwiched between two layers of steel. Calculations for this case were actually

reported originally by Miller in [ 1301. The results from this reference as well as the finite element

calculations required for the present evaluation are summarized in Table 4.17. As can be seen in

these data, values obtained with the present Bemoulli-Euler element are identical to those of Yan

and Dowell when shear deformation is ignored. In addition, these results are either identical or

very close to the natural frequencies obtained by Miller [ 1301 using a different finite element model.

Further comparison reveals that the Timoshenko element is more flexible than the

Bemoulli-Euler element, but not as flexible as the beam associated with the solution of Yan and

Dowell which accounts for shear. All other elements generate natural frequencies lower than those

of Yan and Dowell. Comparison with the exact elasticity solution, which ignores Poisson's effect

and transverse normal strain, shows these lower values to be more accurate. Therefore, the

higher-order elements appear to be superior to the solution technique of Yan and Dowell in this

case with the best performance coming from the stacked elements. The Levinson-Bickford a-d

simple third-order elements are capable of second-order accuracy for the first mode, but only

first-order accuracy for the fourth trode. This is still better than the 13% error present in the Yan

and Dowell solution for the fourth mode.
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The work of Khatua and Cheung [ 1261 includes an evaluation of their sandwich-beam finite

element against data from an analytical solution obtained by extending the static technique of Kao

and Ross [891 to vibration problems. The evaluation of [1261 examines the natural frequencies of

the five-layer sandwich beam described in Table 4.15. Results from this previous evaluation effort

along with finite element and elasticity solutions from the present effort are presented in Table 4.18.

As usual, the elasticity solution ignores Poisson's effect as well as transverse normal strain.

The results summarized in Table 4.18 reveal that the solution of Kao and Ross and the finite

element results of Khatua and Cheung agree very favorably with the exact elasticity solution. In

addition, the stacked elements of the present effort enjoy third-order accuracy relative to the elasticity

solution and yield natural frequencies very close to the analytical and finite element results presented

in [ 1261. However, the simple elements are incapable of even first-order accuracy for the first mode

and generate answers off by about 200% for the fifth mode. This trend is similar to the one seen

in the sandwich-beam case used in the convergence study discussed in Section 4.1.1.

4.3.3. Experimental Data

Experimental results used in this evaluation are taken from the works of Shoua [160] and

Leibowitz and Lifshitz [ 1611. Both of these experimental efforts were undertaken to examine the

damped vibration of cantilever sandwich beams. Table 4.19 summarizes properties for the beams

investigated in these efforts which are of interest in the present evaluation. These beams include

the sandwich beam composed of fiberglass facings with a fiberglass core tested by Shoua [160]

and the three-layer aluminum-neoprene beams used in the experiments of Leibowitz and Lifshitz

11611. The sandwich beam of interest to Shoua conitains facings which are relatively thin compared

with the thickness of the core, whereas the beams tested in [1611 have facings and cores of

comparable thickness. In addition, both symmetric and nonsymmetric configurations are considered

in 1161.
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Natural frequencies obtained from these experimental efforts are compared with finite element

estimates of these frequencies in Tables 4.20 and 4.21. Also included in Table 4.21 are estimates

obtained by Leibowitz and Lifshitz using the analytical method of Mead and Markus discussed in

[831. As can be seen in Table 4.20, all elements developed in the present study are able to estimate

the first natural frequency of Shoua's sandwich beam to within 3% of the experimental value.

However, for the fourth mode, the Bemoulli-Euler and Timoshenko elements are limited to

first-order accuracy or less with all higher-order elements generating errors about an order of

magnitude less than those produced by the lower-order elements. The stacked elements do not

seem to offer any real advantage in accuracy over the simple elements in this case for either the

first or the fourth modes.

However, stacked elements enjoy a decided advantage in the cases investigated by Leibowitz

and Lifshitz [ 161 ]. In fact, reasonable estimates of the natural frequencies of the aluminum-neoprene

sandwich beams considered in [ 161] cannot be obtained with any of the simple elements. For both

the symmetric and nonsymmetric cases, all the simple elements produce comparable errors which

range from about 120% for the first mode of the nonsymmetric beam to approximately 200% for

the second mode of the symmetric beam.

In sharp contrast to these results, the stacked elements generate amazingly small errors ranging

from a minimum of 0.3% for the first mode of the nonsymmetric beam to a maximum of 6% for

the first mode of the symmetric beam. In the case of the nonsymmetric beam, the finite element

results are quite a bit better than the estimates obtained using the method of Mead and Markus [83].

The same is true for the second natural frequency of the symmetric beam. However, the stacked

elements do not outperform the analytical technique for the first mode of this beam. However, in

all cases, the stacked elements provide at least first-order accuracy, a capability not demonstrated

by the analytical technique of Mead and Markus in every case considered in Table 4.19.
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In summary, the finite elements developed in the present study produce estimates of natural

frequency which coml are very favorably with data available in the literature. Of course, the elements

based on the lower-order Bemoulli-Euler and Timoshenko theories have a more limited range of

applicability than do the higher-order elements. Even so, the Timoshenko element enjoys a fairly

wide range of application provided the proper shear correction factor is chosen.

Since the accuracy of the Levinson-Bickford and simple third-order elements is not governed

by the choice of such a factor, these elements appear to be more robust than the Timoshenko element

and may be more attractive alternatives as a result. In addition, these elements are very competitive

with the stacked elements in most cases considered in the convergence and evaluation studies. The

only cases in which these elements are not adequate involve very short beams made of materials

possessing a high degree of orthotropy and some sandwich beams composed of significantly

dissimilar materials. In the former case, the Levinson-Bickford element becomes too stiff as the

beam becomes quite short relative to its depth (see Figure 4.12b). In the latter case, stacked elements

may be the only elements able to calculate natural frequencies accurately. The conditions in which

stacked elements are required are examined in detail in Section 4.4.

4.4. Conditions Requiring Stacked Elements

The purpose of this portion of the evaluation effort is to identify conditions under which

stacked elements must be used to estimate natural frequencies with adequate accuracy. A review

of the data available in Sections 4.1 through 4.3 reveals that, in general, these elements are not

required in the case of fiber-reinforced composite beams of laminated construction, but are essential

in some cases involving sandwich beams. Therefore, this study starts with a sandwich beam whose

natural frequencies can be estimated accurately only with stacked elements. Then properties of this

beam are changed in an attempt to find under what conditions stacked elements are no longer

essential.
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The baseline chosen for this study is the sandwich beam used in the convergence calculations

discussed in Section 4.1. The salient features of this baseline case are summarized in Table 4.22.

Variations to the baseline considered in this study are also detailed in Table 4.22. Both the simple

and stacked third-order elements were used to obtain estimates of first natural frequency for all

cases listed in Tables 4.22.

All finite element calculations were performed using four-element models of the sandwich

beams. The exact elasticity solution ignoring coupling due to Poisson effects and transverse normal

strain provides the standard against which the performance of the finite elements is measured. By

comparing the results from the simple and stacked elements against this standard, it is possible to

identify the conditions under which stacked elements are required to obtain a reasonable estimate

of the natural frequency of sandwich beams. Table 4.23 tabulates the data necessary to make these

comparisons.

As can be seen, merely reducing the ratio of Young's modulus in the facing to Young's

modulus in the core (E1/E) does not result in a condition amenable to simple-element analysis. In

fact, the reduction in this ratio results in a deterioration of the results obtained using the simpic

element, perhaps caused by the increasing degree of orthotropy produced in the core by increasing

its Young's modulus while holding its shear modulus constant. In addition, changing only the

density ratio appears to have no effect on the ability of simple elements to model the response of

sandwich beams.

However, increasing the shear modulus of the core improves the performance of the simple

element dramatically. In cases EG-1 and EG-2, the ratios of E,/G, are changed to 10 and 2,

respectively, while the ratio of Ef/E, is held at 28.6. A steady improvement in the performance of

the simple element can be seen in data from these cases. In case EG-2, the stacked element produces

error about two orders of magnitude less than the simple element, but the first-order accuracy of

the latter element should be adequate for most engineering purposes.
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Even better performance is obtained from the simple element for the same ratios of E,/G,

with the ratio of EfIE, reduced to 10 (EG-3 and EG-4) and finally to 1 (EG-5 and EG-6). in case

EG-6, the simple element provides accuracy equal to that of the stacked element. However, it is

not clear if the improved performance of the simple element is due to a decrease in the degree of

orthotropy of the core or if it is caused by a reduction in the mismatch between the shear moduli in

the facings and in the core. Data from cases EG-7 through EG-10 help to resolve this problem.

In cases EG-7 and EG-8, E,/G, ratios of 10 and 2, respectively, are obtained by decreasing

E,, rather than by increasing G,. This approach allows the ratio of G1/G, to remain at 247 while

decreasing the degree of orthotropy in the core material. For cases EG-9 and EG-10, the E,/G,

ration is held constant at 23.3 while G/G, is reduced first to 20 and then to 2. These combinations

are obtained by increasing both E, and G, so that their ratio remains the same as the one seen in the

baseline.

The results in Table 4.23 reveal that reducing the ratio fo EIG, while holding G1/G, constant

produces a marginal improvement in the ability of the simple element to estimate natural frequency,

whereas decreasing the ratio of G//G, while holding E,/GC constant yields the dramatic improvement

in the performance of the simple element evident in cases EG- 1 through EG-6.

Although it can be argued that the ratio of EIE, is also decreased in cases EG-9 and EG-10,

cases E-1 and E-2 reveal that simply lowering this ratio does not improve the ability of simple

elements to estimate natural frequency. Therefore, the improvement in simple-element performance

seen in cases EG-9 and EG-10 is attributed to the reduction in the mismatch between the shear

moduli in the facings and the core.

This finding indicates that one of the conditions which must be present to render simple

elements inadequate for calculating the natural frequency of composite beams is a large difference



168

in the shear modulus of various layers in the beam. This explains why simple elements are adequate

for most situations involving fiber-reinforced composite beams since the mismatch in the shear

moduli of adjacent laminae is usually quite small, but cannot be used to analyze some sandwich

beams where the mismatch in shear moduli is severe.

Another condition which leads to the requirement for stacked elements can be identified by

comparing the data from cases T- 1 and T-2 to the baseline case. As can be seen, the need for stacked

element- diminishes as the thickness of the facing relative to the total thickness of the beam

decreases. This indicates that stacked elements are required only if the facings in a sandwich beam

have adequate thickness relative to the core to prevent the strain energy of tlc core from dominating

the response of the beam. This requirement may explain the ability of the simple elements to model

the response of the cantilever beam tested by Shoua [1601, although it is possible that the beam's

GIG, ratio of aiout 65 may be too small to be in the range in which stacked elements are required

to analyze natural frequencies.

In summary, it can be said that stacked elements are required to calculate the natural

frequencies of composite beams when large disparities in shear moduli for the various layers of the

beam exist, and when each layer is thick enough to make significant contributions to the overall

response of the beam. Simple elements should be capable of generating reasonable results in most

other situations. However, as pointed out at the end of Section 4.1.1, this discussion considers the

ability of finite elements to calculate natt ral frequency only. In vibration problems where stresses

are of interest, the higher-order kinematic constraints associated with stacked elements may be

necessary to estimate these stresses accurately even in situations where simple elements prove

adequate for the analysis of natural frequency.
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5. SUMMARY AND CONCLUSIONS

As stated in Chapter 1, the goal of this investigation is to develop shear-deformable finite

elements which can be used to analyze the dynamic response of composite beams. This goal has

been achieved by pursuing the objectives established in Section 1.3 to guide this effort. The first

objective of this effort is to derive the mass and stiffness matrices for the shear-deformable elements

and incorporate them into computer programs which can be used to ascertain the natural frequencies

of composite beams in free vibration. The second objective is to evaluate the performance of these

elements to determine when elements based on higher-order kinematic constraints must be used to

account for the effects of shear deformation on the dynamic response of composite beams. Both

objectives have been met.

The shear-deformable elements developed in this study include simple elements associated

with the beam :heories of Timoshenko [12,291, Levinson [56,57] and Bickford [58], and the general

third-order theory of Yuan and Miller [63], as well as stacked versions of the Timoshenko and

third-order elements. In addition, a Bernoulli-Euler beam which accounts for rotary inertia is

included in the study to show what happens when shear deformation is not accounted for.

Chapter 2 discusses the theories associated with these elements in detail; Chapter 3 focu es

on the finite element formulation of these theories. The evaluations made to fulfill the second

objective of this effort are discussed in Chapter 4. This chapter summarizes the results and

conclusions of this effort.

5.1. Summary

Section 5.1 1 reviews the features of the present elements to show how they are different from

other elements discussed in the literature and to highlight the improvement in analytical capability

made possible by these new elements. Section 5.1.2 summarizes the findings presented in Chapter
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4 to show the relative merits of each of the present elements.

5.1.1. Uniqueness of Present Elements

The elements developed in this effort possess a unique combination of features. For one

thing, all elemenis are capable of modeling composite-beam constitutive relations. In addition,

kinematic constraints for each element include terms for both axial and bending modes of response.

The governing equations associated with these material properties and kinematic constraints account

for dynamic response, including the coupling of the axial and bending responses possible in

nonsymmetric composites. Finally, the finite element formulation of each composite-beam theory

employs a consistent set of shape functions. This allows the elements to avoid locking in a

straightforward manner while retaining th- property of bounded, monotonic convergence

guaranteed for complete, conforming elements.

Although finite elements similar to the ones developed in this study are discussed in the

literature, none has been found which possesses features identical to the combination just described.

The Timoshenko beam element of Nickel and Secor [ 106] bears a strong resemblance 'o the simple

Timoshenko element of the present study in that it also uses a conaistent set of shape functions:

however, it is formulated for homogeneous beams only. The element of Heyliger and Reddy [ 115]

is based on the same kinematic constraint as the present Levinson-Bickford element, but it is also

limited to homogeneous beams. In addition, it employs an inconsistent set of shape functions. Even

so, the authors claim the element should not lock.

The element of Kant and Gupta [641 is based on a kinematic constraint similar to the one used

in the simple third-order element of this study. However, their element accounts for transverse

normal strain, but ignores the even-ordered terms contained in the kinematic constraint of the present

third-order element. Also, the formulation of the element discussed in [641 does not include
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composite-beam constitutive relations. Finally, the linear shape functions used to interpolate each

displacement variable in the element give the element a very slow rate of convergence relative to

elements in the present study, especially in the thin-beam limit.

In [65], Kant and Manjunath discuss a composite-beam element based on a kinematic

constraint identical to the one for the third-order element of the present study. However, the element

is limited to static problems. In addition, reduced integration is used to obtain the shear-related

terms in the stiffness matrix for this element, as opposed to the exact integration used for all beams

developed in this study.

Of course, the simple third-order element derived in this effort is closely related to the one

developed by Yuan and Miller in [631, but the element discussed in [63] is different from the present

element in two important respects. First, the stiffness matrix of the present element accounts for

composite-beam behavior, including the coupling of axial and bending response modes

characteristic of nonsymmetric beams. Second, the present element is capable of modeling the

dynamic behavior of composite beams.

The stacked elements represent a natural extension of the work of Yuan and Miller [ 127,1281

from static composite-beam elements to dynamic elements for composite beams. In addition, the

performance of these elements is similar to that of the sandwich-beam element developed by Khatua

and Cheung [ 126]. However, as with most theories for sandwich beams, this element ignores shear

deformation in the facings as well as axial and bending deformations in the cores. Therefore, the

stacked elements developed in this study should have a wider range of application since they are

not limited by such assumptions. Finally, the stacked third-order element is based on what appears

to be the highest-order kinematic constraint discussed in the literature to date.

The comparison of finite element results against the exact elasticity solutions of Kulkarni and

Pagano 1 17] and Jones 1161 reveals that all the shear-deformable elements are capable of estimating
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the natural frequencies of very short, orthotropic composites accurately as long as the degree of

orthotropy is not too large. This indicates that ignoring transverse normal strain and the cot,,i .ig

of longitudinal and lateral motions associated with Poisson effects does not adversely affect the

performance of these elements in cases where this restriction is satisfied. However, as the ratio of

E/G gets large, the performance of these elements deteriorates, implying that some attention must

be paid to Poisson effects or transverse normal strain as the degree of orthotropy increases.

In general, all finite elements examined in this investigation provide results which are as good

as or superior to those which can be obtained from other higher-order theories. The simple

Timoshenko element appears to be as accurate as the elements developed by Archer [101], Kapur

11031, Nickel and Secor [ 1061, Thomas, et al. [I11, and Carnegie, et al. [159]; however, it has a

slower rate of convergence than the elements of Archer and Thomas, et al. Even so, the performance

of the present Timoshenko element appears to improve relative to these other two elements as the

span-to-depth ratio of the beam decreases and as the fixity of the ends of the beam increases.

Comparisons made with results obtained from Levinson's beam theory [56,571 reveal that

the Levinson-Bickford element of the present study estimates natural frequencies higher than those

obtained by Levinson himself. The differences are attributed to the fact that Levinson developed

his theory using a strength of materials approach, whereas the present element is obtained from an

energy formulation. The performance of the present Levinson-Bickford element in other cases

considered in Chapter 4 in which the exact elasticity solution is available reveals that this element

can be quite accurate. Therefore, it is possible that Levinson's theory underpredicts the natural

frequencies of beams.

As stated above, the present elements enjoy a faster rate of convergence than does the element

of Kant and Gupta [641, even though this element is based on a third-order kinematic constraint.

In addition, the accuracy of the present elements appears to be better.
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The simple Levinson-Bickford and third-order elements, as well as the stacked elements, also

seem to offer an improvement over the analytical technique of Yan and Dowell [86], especially for

cases involving short beams or higher modes of vibration. In addition, the stacked elements appear

to be slightly more accurate than the theory of Kao and Ross [89] and the finite element of Khatua

and Cheung [ 126].

Finally, the present elements performed well in the comparison with experimental data.

Evaluations made using data generated by Leibowitz and Lifshitz [ 161] also reveal that the stacked

elements are quite competitive with the analytical technique of Mead and Markus [83], even though

the elements ignore viscoelastic damping and the analytical technique does not.

5.1.2. Relative Merits of Present Elements

As expected, the Bernoulli-Euler element is limited to situations where shear deformation is

not important. These conditions usually include the lower modes of long, slender beams made of

homogeneous, isotropic material. However, it should be noted that the results from the comparison

made with experimental data obtained by Shoua [160] reveal that this element can also be used to

analyze the response of a composite beam as long as the beam is quite long relative to its depth and

only the lowest response modes are of interest.

The simple Timoshenko beam element turns out to be a very accurate element as long as the

proper shear correction factor is chosen. The simplicity of this element makes it a very powerful

tool in the hands of an experienced analyst. However, both the Levinson-Bickford element and

the simple third-order element are capable of generating highly accurate results without resorting

to the use of a correction factor. Therefore, using these elements properly does not require as much

engineering judgment as does using a Timoshenko element.
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Of the Levinson-Bickford element and the simple third-order element, the former offers the

advantage of a faster rate of convergence. In fact, this rate of convergence is even slightly faster

than that of the simple Timoshenko element. However, the Levinson-Bickford element is not as

robust as the simple third-order element in that it appears to be too stiff in cases involving composite

beams made out of highly orthotropic materials. The same is true for the simple third-order element,

but this element does not suffer as great a loss in accuracy in these cases as does the

Levinson-Bickford element. Also, the Levinson-Bickford element cannot be stacked as the

Timoshenko and third-order elements can.

In addition, the C' continuity required in the lateral displacement of the Levinson-Bickford

element leads to other possible disadvantages. First, as pointed out by Thomas, et al. [I lI], this

continuity requirement prevents the element from being able to model discontinuities in shear strain,

should the need arise. In addition, developing a conforming plate element by extending this beam

theory to plates may prove difficult. However, the possible limitations associated with the

requirement for C' continuity posed no problems in the present effort and this element is

recommended as an alternative in cases where the shear correction factor required by Timoshenko

beam theory is not readily available.

For the cases considered in this investigation, the simple third-order element is always the

most accurate simple element not requiring a shear correction factor. However, it achieves this

level of performance by employing a greater number of degrees of freedom than do the other simple

elements. Therefore, its use must be governed by evaluating the tradeoff between the accuracy of

this element and the cost of using it.

Stacked elements are required when there is a large mismatch in the shear moduli of adjacent

layers in a composite beam, and when the thickness of adjacent layers is large enough to prevent

any one layer from dominating the internal strain energy of the beam. This combination usually

comes into play in the case of sandwich beams whose facings are thick enough to contribute strain
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energy comparable to that of the core. Obviously, the stacked third-order element is more accurate

than the stacked Timoshenko beam. However, the latter is probably accurate enough for most

engineering purposes, and attains this accuracy with far fewer degrees of freedom.

It should be pointed out that in cases where stacked elements are not essential, the simple

third-order element outperforms the stacked Timoshenko element, indicating that in these cases it

is better to impose a higher-order constraint on the entire beam than to impose an independent,

lower-order constraint on separate layers within the beam.

It should also be noted that the above remarks apply only to calculations aimed at finding the

natural frequencies of composite beams. It is expected that the merits of the simple and stacked

third-order elements become even more apparent in cases where stress distributions are of interest

(e.g., in the case of forced vibrations).

5.2. Conclusions

In conclusion, it can be said that the goal of this effort has been achieved. The elements

developed in this effort provide a means of estimating the natural frequencies of composite beams

in cases where the effects of shear deformation are expected to be significant. In addition, each

element offers some combination of accuracy and efficiency which should make it attractive in

certain situations.

The Bemoulli-Euler element is the element of choice in cases where shear deformation is not

important. When this is not the case, the simple Timoshenko element can be used effectively if the

analyst is able to choose an appropriate value for the shear correction factor. If this factor is not

available, the Levinson-Bickford element can be used with confidence as long as the degree of

orthotropy is not too high. As the degree of orthotropy increases, the analyst will be forced to use

the simple third-order element in order to attain an adequate level of accuracy.
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Finally, stacked elements must be used in the analysis of sandwich beams when the shear

modulus of the facings is much larger than the shear modulus of the core as long as the facings are

thick enough to contribute significantly to the total strain energy of the beam. In these cases, the

stacked Timoshenko beam should provide adequate accuracy for most engineering purposes.
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APPENDIX

This appendix contains the tabular data generated for the evaluation efforts documented in

Chapter 4.

Table 4.1 Labels used in Finite Element Evaluation.

Class of Label Description of Calculation
Calculations

Accuracy Cl-IS Homogeneous, isotropic beam
(and Convergence)

Cl-OR Homogeneous, orthotropic beam

C1-L3 3-layer laminated composite beam

C 1-S3 3-layer sandwich beam

C2-IA Steel beam [I111], Ld = 14.4

C2-IB Lid = 5.8

C3-IA Same as Cl-IS, [641. Lid = 10

C3-IB L/d = 2

Shear Locking SL-I-X Same as Cl-IS, Lid = X

(i.e., 10,100,1000 or 10,000)
SL-0-X Same as Cl-OR

SL-L3-X Same as Cl-L3

SL-S3-X Same as C1-$3
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Table 4.1 Concluded.

Class of Label Description of Calculation
Calculations

Accuracy A1-L3-KP 3-layer
(Comparison with Symmetric Composite [17]
Published Data)

A 1-L2.KP 2-layer
Nonsymmetric compos ite [17]

A1-L2-J1 2-layer composite, low degree of orthotropy [161

A1-L2-J2 2-layer composite, high degree of orthotropy [16]

A2-IA Cantilever steel beam [571
B 3-layer clamped-clamped steel beam [57]

A2-S3 Steel-concrete sandwich beam

A2-$5 5-layer sandwich beam

A3-$3-1 3-layer fiberglass sandwich beam [ 160]

A3-S3-2A 3-layer symmetric aluminum-neoprene sandwich
beam [161]

-2B nonsymmetric beam

Stacked Elements SE-S3-B Baseline, same as CI-S4
E 1,2 Changes in E/EC

Rl,2 Changes in p1/cp

EGI-EGIO Changes in EIG, and GI/G,

T1,2 Changes in tf/d
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Table 4.2 Abbreviations used in Finite Element Evaluations.

Category Abbreviation Meaning

Boundary F Free
conditions

S Simply supported

P Pinned

C Clamped

Finite elements BR Bemoulli-Euler with rotary inertia

TI Timoshenko, k = 1

T Timoshenko, k = 5/6
unless otherwise specified

L Levinson-Bickford
M Third-order

TS Stacked Timoshenko

MS Stacked third-order

Exact solutions EB Bemoulli-Euler

EBR Bernoulli-Euler with rotary inertia

ET1 Timoshenko, k = 1

ET Timoshenko, k = 5/6
unless otherwise specified

EE Elasticity

EL Levinsen (direct method)
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Table 4.3 Properties for Accuracy Calculations, Cases C1-XX.

Case Remarks E G p d L Boundary
(psi) (psi) (lb-s2/in4) (in) (in) Conditions

Cl-IS Aluminum 10 X 106 3.7 x 106 2.6 x 10-  1 10 PS

Cl-OR Graphite-Epoxy 20 x 106 0.6 x 106 1.55 x 10-4 1 10 PS

Cl-L3 Graphite-Epoxy
Laminate

10 PS

Layer 1 20 x 106 0.6 x 106 1.55 x 10-4 0.333

Layer 2 1 x 106 0.5 x 106 1.55 x 10-4 0.334

Layer 3 20 x 106 0.6 x 106 1.55 x 10-4 0.333

C1-$3 Aluminum-Balsa 10 PS
Sandwich

Layer I 10 X 106 3.7 x 106 2.6 x 10-4  0.1

Layer 2 350 x 103 15 x 10' 8.67 x 10.6 0.8

Layer 3 10 X 106 3.7 x 106 2.6 x 10-4 0.1
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Table 4.4 Accuracy Data for Case CI-IS.

Mode Element or No. of No. of Natural Frequency Ae(%) A(%)

Solution Elements DOF (Hz)

EE - - 874.258 -

EBR - - 885.654 1.30 -

ET1 - - 876.124 0.21 -

ET - - 874.254 -0.0005 -

BR 1 4 982.950 12.4 11.0

2 8 889.145 1.70 0.39

4 16 885 884 1.33 0.03

8 32 885 66 1.31 0.002

12 48 885.657 1.30 0.0003

16 64 8h5.655 1.30 0.0001

TI 1 7 970.138 11.0 10.7

2 14 879.508 0.60 0.39

4 28 876.347 0.24 0.03

8 56 876.139 0.22 0.002

12 84 876.127 0.21 0.0003

16 112 876.125 0.21 0.0001

T 1 7 967.634 10.7 10.7

2 14 877.617 0.38 0.3

4 28 874.47o 0.02 0.n,

8 56 874.268 0.001 0.002

i2 84 874.258 0.0 0.0005

16 112 874.256 -0.002 0.0002

'DOF = Degrees Of Freedom
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Table 4.4 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

L 1 7 967.640 10.7

2 13 877.622 0.38

4 25 874.480 0.03

8 49 874.272 0.002

12 73 874.261 0.0003

16 97 874.260 0.0002

M 1 13 967.640 10.7

2 24 877.621 0.38

4 46 874.480 0.03

8 90 874.261 0.002

12 134 874.261 0.0003

16 178 874.259 0.0001

TS 1 13 968.901 10.8

2 24 878.574 0.49

4 46 875.422 0.13

8 90 875.214 0.13

12 134 875.203 0.11

16 178 875.201 0.11

MS 1 31 967.640 10.7

2 54 877.621 0.38

4 100 874.480 0.03

8 192 874.272 0.002

12 284 874.261 0.0003

16 376 874.?59 0.0
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Table 4.4 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

5 EE - - 16,608

EBR - - 20,248 21.9

ET1 - - 17,082 2.86

ET - - 16,589 -0.11

BR 1 4 -

2 8 -

4 16 22,820 37.4 12.7

8 32 20,433 23.0 0.92
12 48 20,287 22.2 0.19

16 64 20,260 22.0 0.06

T1 1 7 71,021 328 316

2 14 39,513 138 131

4 28 18,584 11.9 8.79

8 56 17,193 3.53 0.65
12 84 17,105 3.00 0.14

16 112 17,090 2.90 0.05

T 1 7 65,561 295 295

2 14 36,077 117 117

4 28 17,960 8.14 8.27

8 56 16,690 0.49 0.61
12 84 16,610 0.01 0.13

16 112 16,596 -0.07 0.04
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Table 4.4 Concluded.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

L 1 7 65,216 293

2 13 59,685 259

4 25 17,992 8.34

8 49 16,712 0.63
12 73 16,630 0.14

16 97 16,616 0.05

M 1 13 65,194 293

2 24 39,513 138

4 46 17,990 8.33

8 90 16,710 0.62

12 134 16,629 0.13

16 178 16,614 0.04

TS 1 13 67,781 308

2 24 39,513 138

4 4 , 18,290 10
8 90 16,954 2.1

12 134 16,870 1.6

16 178 16,854 1.5

MS 1 31 65,177 292

2 54 39,513 138

4 100 17,989 8.3

8 192 16,710 0.62

12 284 16,629 0.13

16 376 16,614 0.0004
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Table 4.5 Accuracy Data for Case CI-OR.

Mode Element or No. of No. of DOF Natural Frequency A,(%) A(%)
Solution Elements (Hz)

EE 1410.283

EBR 1622.183 15.03

ETI 1439.356 2.06

ET 1409.638 -0.05

BR 1 4 1800.393 27.7 11.0

2 8 1628.583 15.5 0.39

4 16 1622.604 15.1 0.03

8 32 1622.209 15.0 0.002
12 48 1622.188 15.0 0.0003

16 64 1622.184 15.0 0.0001

T1 1 7 1562.006 10.8 8.52

2 14 1443.844 2.38 0.31

4 28 1439.651 2.08 0.02

8 56 1439.375 2.06 0.001

12 84 1439.360 2.06 0.0003

16 112 1439.358 2.06 0.0001

T 1 7 1524.693 8.11 8.16

2 14 1413.856 0.25 0.30

4 28 1409.915 -0.03 0.02

8 56 1409.656 -0.04 0.001
12 84 1409.642 -0.05 0.0003

16 112 1409.640 -0.05 0.0001
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Table 4.5 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

L 1 7 1525.712 8.18
2 13 1414.560 0.30

4 25 1410.587 0.02

8 49 1410.327 0.003
12 73 1410.313 0.002

16 97 1410.310 0.002

M 1 13 1525.688 8.2

2 24 1414.529 0.30

4 46 1410.574 0.02

8 90 1410.314 0.002

12 134 1410.300 0.001

16 178 1410.297 0.001

TS 1 13 1543.933 9.5

2 24 1429.260 1.3

4 46 1425.185 1.1

8 90 1424.917 1.0
12 134 1424.903 1.0

16 178 1424.900 1.0

MS 1 31 1525.674 8.2
2 54 1414.521 0.30

4 100 1410.566 0.02

8 192 1410.306 0.002
12 284 1410.292 0.0006

16 376 1410.289 0.0004
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Table 4.5 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

5 EE 13,710

EBR 37,086 171

ETI 14,506 5.80

ET 13,391 -2.33

BR 1 4 -

2 8

4 16 41,797 205 12.7

8 32 37,426 173 0.92

12 48 37,158 171 0.19

16 64 37,110 171 0.06

Ti 1 7 56,154 310 287
2 14 20,667 50.7 42.5

4 28 14,857 8.37 2.42

8 56 14,527 5.96 0.14
12 84 14,510 5.83 0.03

16 112 14,507 5.81 0.007

T 1 7 54,343 296 306

2 14 18,869 37.6 40.9

4 28 13,688 -0.16 2.22

8 56 13,408 -2.2 0.13
12 84 13,394 -2.3 0.02

16 112 13,392 -2.3 0.007
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Table 4.5 Concluded.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

L 1 7 54,233 296

2 13 31,129 127

4 25 14,405 5.07

8 49 13,972 1.93
12 73 13,947 1.73

16 97 13,943 1.70

M 1 13 54,226 296

2 24 20,660 50.7

4 46 14,142 3.15

8 90 13,790 0.58
12 134 13,771 0.44

16 178 13,768 0.42

TS 1 13 55,070 302

2 24 20,664 51

4 46 14,545 6.1

8 90 14,199 3.6

12 134 14,181 3.4
16 178 14,178 3.4

MS 1 31 54,221 77

2 54 20,660 51

4 100 14,071 2.6

8 192 13,735 0.18

12 284 13,717 0.05

16 376 13,714 0.03



189

Table 4.6 Accuracy Data for Case C1-L3.

Mode Element or No. of No. of Natural Frequency A,(%) A%
Solution Elements DOF (Hz)

EE 1376.110

EBR 1593.214 15.8

ET1 1410.432 2.49

ET 1380.835 G.35

BR 1 4 1768.242 28.5 11.0

2 8 1599.500 16.2 0.39

4 16 1593.628 15.8 0.03

8 32 1593.240 15.8 0.002

12 48 1593.219 15.8 0.0003

16 64 1593.216 15.8 0.0001

T1 1 7 1530.051 11.2 8.48

2 14 1414.809 2.81 0.31

4 28 1410.719 2.51 0.02

8 56 1410.450 2.50 0.001

12 84 1410.436 2.49 0.0003

16 112 1 410.433 2.49 0.0001

T 1 7 1492.933 8.49 8.12

2 14 1384.946 0.64 0.30

4 28 1381.105 0.36 0.02

8 56 1380.852 0.34 0.001

12 84 1380.839 0.34 0.0003

16 112 1380.836 0.34 0.0001
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Table 4.6 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A%
Solution Elements DOF (Hz)

L 1 7 1487.805 8.12

2 13 1380.687 0.33

4 25 1376.855 0.05

8 49 1376.604 0.04

12 73 1376.590 0.03

16 97 1376.588 0.03

M 1 13 1487.776 8.11

2 24 1380.638 0.33

4 46 1376.823 0.05

8 90 1376.572 0.03

12 134 1376.589 0.03

16 178 1376.557 0.03

TS 1 13 1505.125 9.38

2 24 1394.693 1.35

4 46 1390.766 1.07

8 90 1390.508 1.05

12 134 1390.494 1.05

16 178 1390.491 1.05

MS 1 31 1487.241 8.08

2 54 1380.195 0.30

4 100 1376.383 0.02

8 192 1376.132 0.002

12 284 1376.119 0.0006

16 376 1376.116 0.0004
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Table 4.6 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A%
Solution Elements DOF (Hz)

5 EE 13,215

EBR 36,424 176
ET1 14,116 6.81

ET 13,029 -1.42

BR 1 4 -

2 8 -

4 16 41,051 211 12.7

8 32 36,758 178 0.92
12 48 36,494 176 0.19

16 64 36,447 176 0.06

TI 1 7 54,930 316 289
2 14 20,084 52.0 42.3

4 28 14,454 9.37 2.40

8 56 14,136 6.96 0.14
12 84 14,120 6.84 0.03

16 112 14,117 6.83 0.0001

T 1 7 53,182 302 308
2 14 18,337 38.8 40.7

4 28 13,314 0.75 2.19

8 56 13,044 -1.29 0.12
12 84 13,031 -1.39 0.02

16 112 13,029 -1.41 0.0



192

Table 4.6 Concluded.

Mode Element or No. of No. of Natural Frequency A,(%) A%
Solution Elements DOF (Hz)

L 1 7 52,374 296

2 13 29,582 124

4 25 13,796 4.39

8 49 13,395 1.36

12 73 13,372 1.19

16 97 13,368 1.16

M 1 13 52,271 296

2 24 20,076 51.9

4 46 13,614 3.01

8 90 13,275 0.45

12 134 13,257 0.31

16 178 13,254 0.30

TS 1 13 52,468 297

2 24 20,079 51.9

4 46 13,976 5.75

8 90 13,641 3.22

12 134 13,624 3.09

16 178 13,621 3.07

MS 1 31 51,860 292

2 54 20,076 51.9

4 100 13,567 2.66

8 192 13,239 0.18

12 284 13,222 0.05

16 370 13,219 0.03
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Table 4.7 Accuracy Data for Case C1-S3.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

EE 689.244

EBR 1316.547 91.0

ET1 1282.738 86.1

ET 1276.277 85.2

BR 1 4 1461.086 112 11.0

2 8 1321.739 91.8 0.39

4 16 1316.889 91.1 0.03

8 32 1316.569 91.0 0.002

12 48 1316.552 91.0 0.004

16 64 1316.549 91.0 0.0004

TI 1 7 1415.850 105 10.4

2 14 1287.544 86.8 0.37

4 28 1283.054 86.2 0.02

8 56 1282.758 86.1 0.002

12 84 1282.742 86.1 0.0003

16 112 1282.739 86.1 0.0

T 1 7 1407.286 104 10.3

2 14 1281.011 85.8 0.37

4 28 1276.588 85.2 0.02

8 56 1276.297 85.2 0.002

12 84 1276.281 85.2 0.0003

16 112 1276.278 85.2 0.0
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Table 4.7 Continued.

Mode Element or No. of No. of Natural Frequency Ae(%) A(%)
Solution Elements DOF (Hz)

L 1 7 1145.679 66.2

2 13 1072.383 55.6

4 25 1069.741 55.2

8 49 1069.569 55.2

12 73 1069.559 55.2

16 97 1069.558 55.2

M 1 13 993.794 44.2

2 24 943.295 36.9

4 46 941.463 36.6

8 90 941.344 36.6

12 134 941.338 36.6

16 178 941.337 36.6

TS 1 13 711.887 3.29

2 24 690.127 0.13

4 46 689.351 0.02

8 90 689.302 0.008

12 134 689.299 0.008

16 178 689.299 0.008

MS 1 31 711.835 3.28

2 54 690.073 0.12

4 100 689.296 0.008

8 192 689.247 0.0004

12 284 689.245 0.0001

16 376 689.244 0.0
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Table 4.7 Continued.

Mode Element or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

5 EE 4519.0

EBR 27,505 509
ETI 20,608 356

ET 19,669 335

BR 1 4 -

2 8

4 16 30,952 585 12.5
8 32 27,755 514 0.91
12 48 27,558 510 0.19

16 64 27,523 509 0.07

TI 1 7 49,287 991 139
2 14 37,409 728 81.5
4 28 21,950 386 6.51

8 56 20,708 358 0.48
12 84 20,629 356 0.10
16 112 20,615 356 0.03

T 1 7 46,021 918 134
2 14 34,164 656 73.7

4 28 20,827 361 5.89

8 56 19,755 337 0.43
12 84 19,687 336 0.09

16 112 19,675 335 0.03
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Table 4.7 Concluded.

Mode Elen-ent or No. of No. of Natural Frequency A,(%) A(%)
Solution Elements DOF (Hz)

L 1 7 27,745 514

2 13 13,435 197

4 25 9184.4 103

8 49 8980.6 98.7

12 73 8969.6 98.5

16 97 8967.8 98.4

M 1 13 26,155 479

2 24 9844.0 118

4 46 7221.2 59.8

8 90 7016.2 55.3

12 134 7004.S 55.0

16 178 7003.0 55.0

TS 1 13 24,918 451

2 24 5913.6 30.9

4 46 4720.7 4.46

8 90 4547.0 0.62

12 134 4537.2 0.40

16 178 4535.5 0.37

MS 1 31 24,918 451

2 54 5912.3 30.8

4 100 4698.1 3.96

8 192 4531.0 0.27

12 284 4521.6 0.06

16 376 4520.0 0.02
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Table 4.8 Properties for Accuracy Calculations, Cases C2-XX and C3-XX.

Case Remarks E G p d L Boundary
(psi) (psi) (lb-s2/in 4) (in) (in) Conditions

C2-IA Steel, k = 2/3 30 x 106 11.3 x 106 7.25 x 104 1 14.4 CF
[1111

C2-IB Steel, k = 0.65 30 x 106 11.5 x 106 7.25 x 104  2.49 14.4 CF
[111]

C3-IA Aluminum 10 x 106 3.7 x 10' 2.6 x 10-  1 10 PS
[64]

C3-IB Aluminum 10 x 106 3.7 x 106 2.6 x 104  1 2 PS
[64]

Table 4.9 Convergence Data for Cases C2-IA and B [111].

Case Mode Element or No. of No. of Natural Frequency A%
Solution' Elements DOF (Hz)

C2-IA 3 ET 2588.991

T 1 5 6617.355 156

2 10 3087.754 19.3
3 15 2619.154 1.17

4 20 2606.775 0.69

6 30 2593.157 0.16

8 40 2501.373 0.05

C2-IB 3 ET 5015.466

T 1 5 7161.914 42.8

2 10 5632.801 12.3
3 15 5060.769 0.90

4 20 5038.169 0.45

6 30 5020.639 0.10

8 40 5017.168 0.03

'Values from [641 obtained from a graph
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Table 4.10 Accuracy Data for Cases C3-IA and B [641.

Case Mode Element or No. of No. of Natural Frequency A%
Solution2  Elements DOF (Hz)

C3-IA 1 EE 874.256

[64] 2 10 -

4 18 1690 94

8 34 1130 29

16 66 920 5.7

32 130 890 1.7

BR See Case Cl-IS

T1

T

L

M

C3-IB 1 EE 16,598 -

EE1 (No Transverse 16,608 0.06
Normal Strain)

[64] 2 10 23,500 42

4 18 18,500 12

8 34 16,900 2

16 66 16,900 2

BR 1 4 22,448 35.2

2 8 20,327 22.5

4 16 20,253 22.0

8 32 20,248 22.0

12 48 20,248 22.0

2Values from [641 obtained from a graph
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Table 4.10 Concluded.

Case Mode Element or No. of No. of Natural Frequency A%
Solution Elements DOF (Hz)

T1 1 7 18,361 10.6

2 14 17,129 3.20

4 28 17,085 2.93

8 56 17,082 2.92

12 84 17,082 2.92

T 1 7 17,754 6.97

2 14 16,632 0.20

4 28 16,592 -0.04

8 56 16,589 -0.06

12 84 16,589 -0.06

L 1 7 17,784 7.15

2 13 16,652 0.33

4 25 16,611 0.08

8 49 16,609 0.06

12 73 16,609 0.06

M 1 13 17,783 7.14

2 24 16,651 0.32

4 46 16,611 0.08

8 90 16,608 0.06

12 134 16,608 0.06
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Table 4.11 Data for Study of Shear Locking.

Case Mode Element or Natural Frequency A%

Solution (Hz)

SL-IS-10 1 EBR 885.654 -

EE 874.258 0.99

BR 885.668 1.00

T1 876.139 0.99

T 874.268 0.99

L 874.272 0.99

M 874.272

-100 1 EBR 8.89252 -

EE 8.89133 1.00

BR 8.89266 1.00

TI 8.89168 1.00

T 8.89148 1.00

L 8.89148 1.00

M 8.89148 1.00

-1000 1 EBR 0.0889288

EE 0.0889286 1.00

BR 0.0889303 1.00

TI 0.0889313 1.00

T 0.0889293 1.00

L 0.0889302 1.00

M 0.0889305 1.00

-10,000 1 EBR 8.89288 x 10-4  -

EE 8.89289 x 10-4  1.00

BR 8.89303 x 104  1.00

TI 9.38573 x 10-4  1.06

T 8.73952 x 104  0.98

L 9.64814 x 104 1.08

M Negative -
eigenvalue
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Table 4.11 Continued.

Case Mode Element or Natural Frequency A%
Solution (Hz)

SL-OR-10 i EBR 1622.183 -

EE 1410.283 0.87

BR 1622.209 1.00

TI 1439.375 0.89

T 1409.656 0.87

L 1410.327 0.87

M 1410.314 0.87

-100 1 EBR 16.2877 -

EE 16.2609 1.00

BR 16.2880 1.00

TI 16.2657 1.00

T 16.2613 1.00

L 16.2613 1.00
M 16.2613 1.00

-1000 1 EBR 0.162884 -

EE 0.162880 1.00

BR 0.162887 1.00

TI 0.162884 1.00

T 0.162884 1.00

L 0.162884 1.00

M 0.162885

-10,000 1 EBR 1.62884 x 10-3  -

EE 1.62891 x 10.3  1.00

BR 1.62887 x 10.3  1.00

Ti 1.62402 x 10.3  1.00

T 1.63613 x 103  1.00

L 1.62169 x 103  1.00

M 1.37656 x 10-3 0.85
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Table 4.11 Continued.

Case Mode Element or Natural Frequency A%
Solution (Hz)

SL-L3-10 I EBR 1593.214

EE 1376.110 0.86

BR 1593.240 1.00

T1 1410.450 0.89

T 1380.852 0.87

L 1376.604 0.86

M 1376.572 0.86

TS 1390.508 0.87

MS 1376.132 0.86

-100 1 EBR 15.9969 -

EE 15.9691 1.00

BR 15.9971 1.00

TI 15.9748 1.00

T 15.9703 1.00

L 15.9696 1.00

M 15.9695 1.00

TS 15.9717 1.00

MS 15.9695 1.00

-1000 EBR 0.159975

EE 0.159972 1.00

BR 0.159978 1.00

Ti 0.159976 1.00

T 0.159975 1.00

L 0.159975 1.00

M 0.159973 1.00

TS 0.159975 1.00

MS 0.159996 1.00
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Table 4.11 Continued.

Case Mode Element or Natural Frequency A%
Solution (Hz)

-10,000 1 EBR 1.59975 x 10-3  -

EE 1.59959 x 10.' 1.00

BR 1.59978 x 10 .3  1.00

TI 1.60667 x 10.3  1.00

T 1.60546 x 10.3  1.00

L 1.60347 x 10.3  1.00

M 1.55007 x 10-3  0.97

TS 1.57945 x 10.3  0.99

MS 1.36868 x 10.' 0.86

SL-S3-10 1 EBR 1316.547 -

EE 689.244 0.52

BR 1316.569 1.00

T1 1282.758 0.97

T 1276.297 0.97

L 1069.569 0.81

M 941.344 0.72

TS 689.302 0.52

MS 689.247 0.52

-100 1 EBR 13.2843

EE 13.1058 0.99

BR 13.2846 1.00

TI 13.2809 1.00

T 13.2802 1.00
L 13.2494 1.00

M 13.1061 0.99

TS 13.1060 0.99

MS 13.1060 0.99
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Table 4.11 Concluded.

Case Mode Element or Natural Frequency A%
Solution (Hz)

-1000 1 EBR 0.132855 -

EE 0.132837 1.00

BR 0.132858 1.00

TI 0.132858 1.00

T 0.132857 1.00

L 0.132854 1.00

M 0.132850 1.00

TS 0.132837 1.00

MS 0.133496 1.00

-10,000 1 EBR 1.32856 x 10.3  -

EE 1.32854 x 10.' 1.00

BR 1.32858 x 10.3  1.00

T1 1.34268 x 10.3  1.01

T 1.34950 x 10.3  1.02

L 1.32827 x 10-3  1.00

M Negative
eigenvalue

TS Negative
eigenvalue

MS Negative
eigenvalue
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Table 4.12 Properties for Accuracy Calculations, Cases AI-XX-XX.

Case Remarks E G p L d Boundary
Conditions

A1-L3-KP Symmetric

laminate [17] 1 10 SS

Layer 1 4 0.6 0.333

Layer 2 2 0.5 0.334

Layer 3 4 0.6 0.333

A1-L2-KP Nonsymmetric
laminate [171

1 10 SS
Layer 1 4 0.6 0.5
Layer 2 2 0.5 0.5

A1-L2-J1 Nonsymmetric
laminate [16] 1 10 SS
Layer 1 4 1 1

Layer 2 1 1 1

Al-L2-J2 Nonsymmetric

laminate [161 10 10 SS

Layer 1 40 1 1

Layer 2 1 1 1
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Table 4.13 Accuracy Data for Cases from Kulkarni & Pagano [17].

Case Element md/L Nondimensional Natural Frequency

] Flexural Extensional

A1-L3-KP BR 0 0

0.2 0.17 0.87

0.4 0.33 0.87

0.6 0.46 0.87

0.8 0.56 0.87
1.0 0.65 0.87

1.2 0.71 0.87

T 0 0.15

0.2 0.23 0.87

0.4 0.27 0.87

0.6 0.29 0.87

0.8 0.30 0.87
1.0 0.31 0.87

1.2 0 0.87

L 0 0

0.2 0.15 0.87

0.4 0.23 0.87

0.6 0.27 0.87

0.8 0.29 0.87
1.0 0.30 0.87

1.2 0.31 0.87

M 0 0

0.2 0.15 0.87

0.4 0.23 0.86

0.6 0.27 0.86

0.8 0.29 0.85

1.0 0.30 0.84

1.2 0.31 0.83
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Table 4.13 Continued.

Case Element md/L Nondimensional Natural Frequency

[ Flexural Extensional

TS 0 0 -

0.2 0.15 0.87

0.4 0.23 0.86

0.6 0.27 0.86

0.8 0.29 0.86

1.0 0.30 0.85

1.2 0.31 0.84

MS 0.2 0.15 0.87

0.6 0.27 0.84

1.2 0.31 0.79

AI-L2-KP BR 0 0 -

0.2 0.15 0.87

0.4 0.28 0.87

0.6 0.39 0.88

0.8 0.48 0.88
1.0 0.54 0.89

1.2 0.59 0.90

T 0 0

0.2 0.14 0.86

0.4 0.22 0.84

0.6 0.26 0.81

0.8 0.28 0.79

1.0 0.29 0.77

1.2 0.30 0.76
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Table 4.13 Concluded.

Case Element md/L Nondimensional Natural Frequency

Flexural Extensional

L 0 0

0.2 0.15 0.86

0.4 0.22 0.84

0.6 0.26 0.81

0.8 0.29 0.78

1.0 0.30 0.77

1.2 0.31 0.76

M 0 0

0.2 0.14 0.86

0.4 0.22 0.84

0.6 0.26 0.81

0.8 0.28 0.78

1.0 0.30 0.76

1.2 0.31 0.75

TS 0 0 -

0.2 0.14 0.86

0.4 0.22 0.84

0.6 0.27 0.81

0.8 0.30 0.79

1.0 0.31 0.77

1.2 0.32 0.76

MS 0.2 0.13 0.86

0.6 0.26 0.80

1.2 0.31 0.74
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Table 4.14 Accuracy Data for Cases from Jones [ 16].

Case Element md/L Nondimensional Natural Frequency

S Flexural ] Extensiona

A1-L2-J1 BR 0 0

0.4 0.23 0.81

0.8 0.38 0.84

1.2 0.45 0.87

1.6 0.49 0.90

2.0 0.51 0.92

T 0 0

0.4 0.19 0.73

0.8 0.26 0.64

1.2 0.29 0.60

1.6 0.30 0.58

2.0 0.31 0.57

L 0 0

O. 0.19 0.72

0.8 0.27 0.63

1.2 0.30 0.59

1.6 0.32 0.57

2.0 0.34 0.56

M 0 0

0.4 0.19 0.72

0.8 0.26 0.62

1.2 0.29 0.58

1.6 0.31 0.55

2.0 0.32 0.54
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Table 4.14 Continued.

Case Element md/L Nondimensional Natural Frequency

Flexural Extensional

TS 0 0

0.4 0.19 0.74

0.8 0.27 0.65

1.2 0.30 0.59

1.6 0.32 0.56

2.0 0.33 0.54

MS 0.4 0.19 0.72

1.2 0.29 0.57

2.0 0.32 0.53

A 1-L2-J2 BR 0 0 -

0.4 0.13 0.75

0.8 0.21 0.80

1.2 0.25 0.85

1.6 0.27 0.89

2.0 0.28 0.91

T 0 0

0.4 0.08 0.36

0.8 0.10 0.32

1.2 0.10 0.21

1.6 0.10 0.31

2.0 0.10 0.30

L 0 0

0.4 0.09 0.34

0.8 0.11 0.29

1.2 0.13 0.28

1.6 0.15 0.28

2.0 0.16 0.28
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Table 4.14 Concluded.

Case Element md/L Nondimensional Natural Frequency

F Flexural Extensional

M 0 0

0.4 0.08 0.31

0.8 0.09 0.23

1.2 0.10 0.21

1.6 0.10 0.19
2.0 0.10 0.18

TS 0 0 -

0.4 0.08 0.33

0.8 0.09 0.23

1.2 0.10 0.20

1.6 0.10 0.18

2.0 0.11 0.17

MS 0.4 0.08 0.29

1.2 0.10 0.19

2.0 0.10 0.17
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Table 4.15 Properties for Accuracy Calculations, Cases A2-XX.

Case Remarks E G P 4 d L Boundary
(psi) (psi) (lb-s2/in) (in) (in) Conditions

A2-IA Steel Beam 30.45x10 6  11.71x10 6 7.34x10 4 4.92125 19.685 CF

A2-LB "fCC

A2-S3 Steel-
Concrete-Steel 100 PS
Sandwich

Layer 1 30x10 6  12x10 6  7.25x10 4  1

Layer 2 3x10 6  1.2x10 6  2.25x10 4  5

Layer 3 30x10 6  12x10 6  7.25x10 4  1

A2-S5 5-Layer
Sandwich 20 PS

Layers 1,3,5 10xI06  3.7x10 6  1.0 0.02

Layers 2,4 12.5x 10' 5x103 025 0.4
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Table 4.16 Accuracy Data for Cases from Levinson [57].

Case Mode Element or Natural Frequency (Rad/s) A%
Solution

[Levinson [57] FE

A2-IA I T' 2505 2505 0

L 2480 2508 1.13

M 2480 2506 1.05

4 T 46,698 46,727 0.06

L 46,095 47,788 3.68

M 46,095 47,157 2.30

A2-IB 1 T 12,284 12,289 0.04

L 11,985 12,468 4.03

M 11,985 12,350 3.05

4 T 61,782 61,843 0.10

L 60,848 64,809 6.51

M 60,848 62,949 3.45

k = 5/6
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Table 4.17 Accuracy Data for Case A2-S3 from Miller [130].

Mode Element or Natural Frequency A%
Solution

EE 71.8

[86] without 74.1 3.2
shear

[86] with 72.8 1.4
shear

[130] 74.1 3.2

BR 74.1 3.2

TI 73.4 2.2

T 73.3 2.1

L 72.3 0.7

M 72.1 0.4

TS 71.8 0.0

MS 71.8 0.0

4 EE 819

[861 without 1140 39
shear

[86] with 923 13
shear

[130] 1160 42

BR 1140 39

TI 1010 23

T 994 21

L 873 6.6

M 854 4.3

TS 821 0.2

MS 820 0.1
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Table 4.18 Accuracy Data for Case A2-$5 from Khatua and Cheung [126].

Mode Element or No. of Natural Frequency A%

Solution Elements (Rad/s)

EE 10.912

Kao [89] 10.888 -0.22
and Ross

Khatua [1261 10.912 0
and Cheung

BR 12.897 18.2

TI 12.847 17.7

T 12.837 17.6

L 12.828 17.6

M 12.823 17.5

TS 10.914 0.02

MS 10.912 0

5 EE 97.629

Kao [891 97.593 -0.04
and Ross

Khatua [126] 98.475 0.87
and Cheung

BR 317.07 225

TI 291.77 199

T 287.39 194

L 283.92 191

M 281.62 188

TS 97.678 0.05

MS 97.678 0.05



216

Table 4.19 Properties for Accuracy Calculations, Cases A3-XX-XX.

Case Remarks E G P d L Boundary
(psi) (psi) (lb-s2/in) (in) (in) Conditions

A3-S3-1 3-Layer
Fiberglass
Sandwich 20 CF

Layers 1,3 3.68x10 6 1.47x10 6  2.52x10 -4  0.02

Layer 2 56.3x10 3 22.5x10 3  6x10 6  0.5

A3-S3-2A 3-Layer
Aluminum
Neoprene 7.09 CF
Sandwich

Layer 1,3 10.3x10 6 3.87x10 6  2.6x10 4  0.157

Layer2, model 545 218 1.17x10 4  0.118

mode 2 730 292

A3-S3-2B 3-Layer
Aluminum
Neoprene 7.09 CF
Sandwich

Layer 1 10.3x10 6 3.87x 106 2.6x10 4  0.197

Layer 2, mode 1 545 218 1.17x10 -4  0.118

mode 2 730 292

Layer 3 10.3x10 6 3.87x10 6 2.6x10 a 0.0787
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Table 4.20 Accuracy Data for Case A3-S3-1 from Shoua [160].

Mode Element or Natural Frequency A%
Solution (Hz)

[160] 38.5

BR 39.7 3.1

TI 39.7 3.1

T 39.7 3.1

L 39.5 2.6

M 39.5 2.6

TS 39.5 2.6

MS 39.5 2.6

4 [1601 1198

BR 1353 13

TI 1319 10
T 1313 9.6

L 1212 1.2
M 1209 0.9

TS 1191 -0.6

MS 1191 -0.6
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Table 4.21 Accuracy Data for Cases from Leibowitz and Lifshitz [161].

Case Mode Element or Natural Frequency A%
Solution (Hz)

A3-S3-2A 1 [161] 115.5 -

[83] 111.7 -3.3

BR 296.5 157

TI 295.8 156

T 295.6 156

L 295.3 156

M 295.2 156

TS 108.7 -5.9

MS 108.7 -5.9

2 [161] 612.0 -

[83] 658.0 7.5

BR 1849 202

TI 1817 197

T 1811 196

L 1798 194

M 1793 193

TS 606.8 -0.8

MS 606.6 -0.9
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Table 4.21 Concluded.

Case Mode Element or Natural Frequency A%
Solution (Hz)

A3-S3-2B 1 [1611 115.0 -

[83] 119.2 3.7

BR 255.0 122

Ti 254.5 121

T 254.4 121

L 254.3 121

M 254.3 121

TS 114.7 -0.3

MS 114.7 -0.3

2 [161] 631.0 -

[83] 712.0 12.8

BR 1592 152

TI 1571 149

T 1567 148

L 1563 148

M 1560 147

TS 651.2 3.2

MS 651.2 3.2
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Table 4.22 Properties for Stacked-Element Study.

Case EI/E GfI/G, E1/GE,/G, P/p, tId

Baseline 28.6 247 2.70 23.3 30 0.1

SE-S3-E1 10 66.7

-E2 1 667

-RI 3

-R2 1

-EGI 106 10

-EG2 21.1 2

-EG3 10 37 10

-EG4 10 7.4 2

-EG5 1 3.7 10

-EG6 1 0.74 2

-EG7 66.7 10

-EG8 333 2

-EG9 2.32 20

-EG10 0.232 2

-TI 0.01

-T2 0.333
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Table 4.23 Data for Stacked-Element Study.

Case Element or Natural Frequency A,
Solution for First Mode (Hz)

SE-S3-E1 EE 691.61

M 950.12 37

MS 691.66 0.01

-E2 EE 705.32

M 1017.53 44

MS 705.48 0.02

-RI EE 480.47

M 656.74 37

MS 480.50 0.01

-R2 EE 328.31

M 444.92 37

MS 328.33 0.01

-EGI EE 900.04 -

M 1029.46 14

MS 900.15 0.01

-EG2 EE 1187.98

M 1206.72 1.6

MS 1188.23 0.02

-EG3 Ell 1135.58 -

M 1176.69 3.6

MS 1135.79 0.02

-EG4 EE 1303.64 -

M 1307.84 0.3

MS 1303.96 0.02
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Table 4.23 Concluded.

Case Element or Natural Frequency A,
Solution for First Mode (Hz)

-EG5 EE 1769.39

M 1770.93 0.09

MS 1769.81 0.02

-EG6 EE 1833.43

M 1833.91 0.03

MS 1833.90 0.03

-EG7 EE 688.42

M 938.61 36

MS 688.47 0.01

-EG8 EE 687.89

M 936.85 36

MS 687.95 0.01

-EG9 EE 1350.88

M 1371.79 1.6

MS 1351.15 0.02

-EGIO EE 2823.93

M 2827.11 0.11

MS 2824.59 0.02

-TI EE 949.23 -

M 959.91 1.1

MS 949.39 0.02

-T2 EE 554.96

M 1021.52 84

MS 555.02 0.01
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